Integrating genomics, bioinformatics, and classical genetics to study the effects of recombination on genome evolution

被引:204
作者
Birdsell, JA [1 ]
机构
[1] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85121 USA
关键词
Saccharomyces cerevisiae; recombination; GC content; biased gene conversion; GC-biased mismatch repair; evolution of isochores; evolution of sex;
D O I
10.1093/oxfordjournals.molbev.a004176
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This study presents compelling evidence that recombination significantly increases the silent GC content of a genome in a selectively neutral manner, resulting in a highly significant positive correlation between recombination and "GC3s" in the yeast Saccharomyces cerevisiae. Neither selection nor mutation can explain this relationship. A highly significant GC-biased mismatch repair system is documented for the first time in any member of the Kingdom Fungi. Much of the variation in the GC3s within yeast appears to result from GC-biased gene conversion. Evidence suggests that GC-biased mismatch repair exists in numerous organisms spanning six kingdoms. This transkingdom GC mismatch repair bias may have evolved in response to a ubiquitous AT mutational bias. A significant positive correlation between recombination and GC content is found in many of these same organisms, suggesting that the processes influencing the evolution of the yeast genome may be a general phenomenon. Nonrecombining regions of the genome and nonrecombining genomes would not be subject to this type of molecular drive. It is suggested that the low GC content characteristic of many nonrecombining genomes may be the result of three processes (1) a prevailing AT mutational bias, (2) random fixation of the most common types of mutation, and (3) the absence of the GC-biased gene conversion which, in recombining organisms, permits the reversal of the most common types of mutation. A model is proposed to explain the observation that introns, intergenic regions, and pseudogenes typically have lower GC content than the silent sites of corresponding open reading frames. This model is based on the observation that the greater the heterology between two sequences, the less likely it is that recombination will occur between them. According to this "Constraint" hypothesis, the formation and propagation of heteroduplex DNA is expected to occur, on average, more frequently within conserved coding and regulatory regions of the genome. In organisms possessing GC-biased mismatch repair, this would enhance the GC content of these regions through biased gene conversion. These findings have a number of important implications for the way we view genome evolution and suggest a new model for the evolution of sex.
引用
收藏
页码:1181 / 1197
页数:17
相关论文
共 110 条
[1]  
ALANI E, 1994, GENETICS, V137, P19
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   DIVERSITY IN G+C CONTENT AT THE 3RD POSITION OF CODONS IN VERTEBRATE GENES AND ITS CAUSE [J].
AOTA, S ;
IKEMURA, T .
NUCLEIC ACIDS RESEARCH, 1986, 14 (16) :6345-6355
[4]   ESCHERICHIA-COLI MUTY GENE-PRODUCT IS REQUIRED FOR SPECIFIC A-G-]C.G MISMATCH CORRECTION [J].
AU, KG ;
CABRERA, M ;
MILLER, JH ;
MODRICH, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (23) :9163-9166
[5]   Investigating extended regulatory regions of genomic DNA sequences [J].
Babenko, VN ;
Kosarev, PS ;
Vishnevsky, OV ;
Levitsky, VG ;
Basin, VV ;
Frolov, AS .
BIOINFORMATICS, 1999, 15 (7-8) :644-653
[6]   Clustering of meiotic double-strand breaks on yeast chromosome III [J].
Baudat, F ;
Nicolas, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (10) :5213-5218
[7]   THE EFFECT OF BIASED CONVERSION ON THE MUTATION LOAD [J].
BENGTSSON, BO .
GENETICS RESEARCH, 1990, 55 (03) :183-187
[8]   Isochores and the evolutionary genomics of vertebrates [J].
Bernardi, G .
GENE, 2000, 241 (01) :3-17
[9]   COMPOSITIONAL CONSTRAINTS AND GENOME EVOLUTION [J].
BERNARDI, G ;
BERNARDI, G .
JOURNAL OF MOLECULAR EVOLUTION, 1986, 24 (1-2) :1-11
[10]   DNA mismatch repair catalyzed by extracts of mitotic, postmitotic, and senescent Drosophila tissues and involvement of mei-9 gene function for full activity [J].
Bhui-Kaur, A ;
Goodman, MF ;
Tower, J .
MOLECULAR AND CELLULAR BIOLOGY, 1998, 18 (03) :1436-1443