Nonlinear dynamical models and jerky motion

被引:88
作者
Linz, SJ
机构
[1] Theoretische Physik I, Institut für Physik, Universität Augsburg
关键词
D O I
10.1119/1.18594
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
We investigate the connection between one-dimensional Newtonian jerky dynamics and nonlinear dynamical systems in a three-dimensional phase space. With exact transformations, we show that the Rossler model, as well as the Lorenz model, can be interpreted as jerky motion and discuss whether they are Newtonian or not. Moreover, Sprott's model R is identified as one of the simplest Newtonian jerky dynamics that can lead to chaos. Using a wide class of jerk functions, we derive a criterion for being Newtonian jerky. (C) 1997 American Association of Physics Teachers.
引用
收藏
页码:523 / 526
页数:4
相关论文
共 10 条
[1]  
BENDER CM, 1978, ADV MATH METHODS SCI, P202
[2]   POWER SPECTRAL-ANALYSIS OF A DYNAMICAL SYSTEM [J].
CRUTCHFIELD, J ;
FARMER, D ;
PACKARD, N ;
SHAW, R ;
JONES, G ;
DONNELLY, RJ .
PHYSICS LETTERS A, 1980, 76 (01) :1-4
[3]  
DRAZIN, 1992, NONLINEAR SYSTEMS
[4]   Question # 38. What is the simplest jerk function that gives chaos? [J].
Gottlieb, HPW .
AMERICAN JOURNAL OF PHYSICS, 1996, 64 (05) :525-525
[5]  
LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
[6]  
2
[7]   EQUATION FOR CONTINUOUS CHAOS [J].
ROSSLER, OE .
PHYSICS LETTERS A, 1976, 57 (05) :397-398
[8]   JERK - TIME RATE OF CHANGE OF ACCELERATION [J].
SCHOT, SH .
AMERICAN JOURNAL OF PHYSICS, 1978, 46 (11) :1090-1094
[9]   SOME SIMPLE CHAOTIC FLOWS [J].
SPROTT, JC .
PHYSICAL REVIEW E, 1994, 50 (02) :R647-R650
[10]  
Strogatz S.H., 1994, NONLINEAR DYNAMICS C