Controlling the complex Lorenz equations by modulation

被引:13
作者
Kociuba, G [1 ]
Heckenberg, NR [1 ]
机构
[1] Univ Queensland, Dept Phys, St Lucia, Qld, Australia
来源
PHYSICAL REVIEW E | 2002年 / 66卷 / 02期
关键词
D O I
10.1103/PhysRevE.66.026205
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We demonstrate that a system obeying the complex Lorenz equations in the deep chaotic regime can be controlled to periodic behavior by applying a modulation to the pump parameter. For arbitrary modulation frequency and amplitude there is no obvious simplification of the dynamics. However, we find that there are numerous windows where the chaotic system has been controlled to different periodic behaviors. The widths of these windows in parameter space are narrow, and the positions are related to the ratio of the modulation frequency of the pump to the average pulsation frequency of the output variable. These results are in good agreement with observations previously made in a far-infrared laser system.
引用
收藏
页码:1 / 026205
页数:5
相关论文
共 14 条
[1]   LIMIT-CYCLES IN A FORCED LORENZ SYSTEM [J].
BHATTACHARJEE, JK ;
BANERJEE, K ;
CHOWDHURY, D ;
SARAVANAN, R ;
MANNA, S .
PHYSICS LETTERS A, 1984, 104 (01) :33-35
[2]   Synchronization of chaotic structurally nonequivalent systems [J].
Boccaletti, S ;
Valladares, DL ;
Kurths, J ;
Maza, D ;
Mancini, H .
PHYSICAL REVIEW E, 2000, 61 (04) :3712-3715
[3]   TAMING CHAOTIC DYNAMICS WITH WEAK PERIODIC PERTURBATIONS [J].
BRAIMAN, Y ;
GOLDHIRSCH, I .
PHYSICAL REVIEW LETTERS, 1991, 66 (20) :2545-2548
[4]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[5]   Topological analysis of chaos in the optically pumped laser [J].
Gilmore, R ;
Vilaseca, R ;
Corbalan, R ;
Roldan, E .
PHYSICAL REVIEW E, 1997, 55 (03) :2479-2487
[6]  
Kaplan J., 1979, Lect. Notes Math., P204
[7]   Transforming chaos to periodic oscillations [J].
Kociuba, G ;
Heckenberg, NR ;
White, AG .
PHYSICAL REVIEW E, 2001, 64 (05) :8
[8]   Influence of noise on chaotic laser dynamics [J].
Liu, C ;
Roy, R ;
Abarbanel, HDI ;
Gills, Z ;
Nunes, K .
PHYSICAL REVIEW E, 1997, 55 (06) :6483-6500
[9]  
LIU Y, 1991, PHYS LETT A, V185, P35
[10]   Controlling chaos in low- and high-dimensional systems with periodic parametric perturbations [J].
Mirus, KA ;
Sprott, JC .
PHYSICAL REVIEW E, 1999, 59 (05) :5313-5324