Robust multi-level partition of unity implicits from triangular meshes

被引:4
作者
Li, Weitao [1 ]
Zhou, Yuanfeng [1 ]
Zhang, Caiming [1 ,2 ]
Li, Xuemei [1 ]
机构
[1] Shandong Univ, Sch Comp Sci & Technol, Jinan 250101, Peoples R China
[2] Shandong Univ Finance & Econ, Shandong Prov Key Lab Digital Media Technol, Jinan, Peoples R China
关键词
MPU; approximation; dual graph; polygon-implicit error metric; SURFACES; CURVES; RECONSTRUCTION;
D O I
10.1002/cav.1536
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper presents a new robust multi-level partition of unity (MPU) method, which constructs an implicit surface from a triangular mesh via the new error metric between the mesh and the implicit surface. The new error metric employs a weighted function of inner points and vertices of a triangle to fit an implicit surface, which can control the approximation error between the surface and vertices of the triangle. Furthermore, it is applied to the MPU method by utilizing the dual graph of a triangular mesh, and the general quadric implicit surface is used for surface representation. Compared with the MPU method, the new method generates fewer subdivision cells with the same approximation error and performs more steadily especially when given triangular mesh with fewer vertices. Copyright (c) 2013 John Wiley & Sons, Ltd.
引用
收藏
页码:115 / 127
页数:13
相关论文
共 31 条
  • [1] Allaire S., 2007, ICCV IEEE, P1, DOI 10.1109/ICCV.2007.4409163
  • [2] [Anonymous], 2001, I3D 01, DOI DOI 10.1145/364338.364345
  • [3] BAEG M, 1995, IROS '95 - 1995 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS: HUMAN ROBOT INTERACTION AND COOPERATIVE ROBOTS, PROCEEDINGS, VOL 3, P204, DOI 10.1109/IROS.1995.525885
  • [4] HIGHER-ORDER INTERPOLATION AND LEAST-SQUARES APPROXIMATION USING IMPLICIT ALGEBRAIC-SURFACES
    BAJAJ, C
    IHM, I
    WARREN, J
    [J]. ACM TRANSACTIONS ON GRAPHICS, 1993, 12 (04): : 327 - 347
  • [5] ALGEBRAIC SURFACE DESIGN WITH HERMITE INTERPOLATION
    BAJAJ, CL
    IHM, I
    [J]. ACM TRANSACTIONS ON GRAPHICS, 1992, 11 (01): : 61 - 91
  • [6] BEARDSLEY PA, 1998, P IEEE C AUT FAC GES
  • [7] Constrained fitting in reverse engineering
    Benko, P
    Kós, G
    Várady, T
    Andor, L
    Martin, R
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2002, 19 (03) : 173 - 205
  • [8] The 3L algorithm for fitting implicit polynomial curves and surfaces to data
    Blane, MM
    Lei, ZB
    Çivi, H
    Cooper, DB
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2000, 22 (03) : 298 - 313
  • [9] Bloomenthal Jules, 1994, Graphics Gems IV, V4, P324
  • [10] Carr JC, 2001, COMP GRAPH, P67, DOI 10.1145/383259.383266