Modulation of substrate adhesion dynamics via microtubule targeting requires kinesin-1

被引:94
作者
Krylyshkina, O
Kaverina, I
Kranewitter, W
Steffen, W
Alonso, MC
Cross, RA
Small, JV
机构
[1] Austrian Acad Sci, Inst Mol Biol, Dept Cell Biol, A-5020 Salzburg, Austria
[2] Kings Coll London, MRC, Muscle & Cell Motil Unit, London SE1 1UL, England
[3] Chart, Marie Curie Res Inst, Surrey RH8 OTL, England
关键词
microtubules; kinesin; actin cytoskeleton; adhesion; signalling;
D O I
10.1083/jcb.200105051
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Recent studies have shown that the targeting of substrate adhesions by microtubules promotes adhesion site disassembly (Kaverina, I., O. Krylyshkina, and J.V. Small. 1999. J. Cell Biol. 146:1033-1043). It was accordingly suggested that microtubules serve to convey a signal to adhesion sites to modulate their turnover. Because microtubule motors would be the most likely candidates for effecting signal transmission, we have investigated the consequence of blocking microtubule motor activity on adhesion site dynamics. Using a function-blocking antibody as well as dynamitin overexpression, we found that a block in dynein-cargo interaction induced no change in adhesion site dynamics in Xenopus fibroblasts. In comparison, a block of kinesin-1 activity, either via microinjection of the SUK-4 antibody or of a kinesin-1 heavy chain construct mutated in the motor domain, induced a dramatic increase in the size and reduction in number of substrate adhesions, mimicking the effect observed after microtubule disruption by nocodazole. Blockage of kinesin activity had no influence on either the ability of microtubules to target substrate adhesions or on microtubule polymerisation dynamics. We conclude that conventional kinesin is not required for the guidance of microtubules into substrate adhesions, but is required for the focal delivery of a component(s) that retards their growth or promotes their disassembly.
引用
收藏
页码:349 / 359
页数:11
相关论文
共 57 条
[1]   CLASPs are CLIP-115 and-170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts [J].
Akhmanova, A ;
Hoogenraad, CC ;
Drabek, K ;
Stepanova, T ;
Dortland, B ;
Verkerk, T ;
Vermeulen, W ;
Burgering, BM ;
De Zeeuw, CI ;
Grosveld, F ;
Galjart, N .
CELL, 2001, 104 (06) :923-935
[2]   Catch and pull a microtubule:: getting a grasp on the cortex [J].
Allan, V ;
Näthke, IS .
NATURE CELL BIOLOGY, 2001, 3 (10) :E226-E228
[3]   Involvement of microtubules in the control of adhesion-dependent signal transduction [J].
Bershadsky, A ;
Chausovsky, A ;
Becker, E ;
Lyubimova, A ;
Geiger, B .
CURRENT BIOLOGY, 1996, 6 (10) :1279-1289
[4]  
Bershadsky AD., 1988, CYTOSKELETON, V1st
[5]  
Best A, 1996, J BIOL CHEM, V271, P3756
[6]   Kinesin- and myosin-driven steps of vesicle recruitment for Ca2+-regulated exocytosis [J].
Bi, GQ ;
Morris, RL ;
Liao, GC ;
Alderton, JM ;
Scholey, JM ;
Steinhardt, RA .
JOURNAL OF CELL BIOLOGY, 1997, 138 (05) :999-1008
[7]   A MONOCLONAL-ANTIBODY AGAINST KINESIN INHIBITS BOTH ANTEROGRADE AND RETROGRADE FAST AXONAL-TRANSPORT IN SQUID AXOPLASM [J].
BRADY, ST ;
PFISTER, KK ;
BLOOM, GS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (03) :1061-1065
[8]   Tea2p is a kinesin-like protein required to generate polarized growth in fission yeast [J].
Browning, H ;
Hayles, J ;
Mata, J ;
Aveline, L ;
Nurse, P ;
McIntosh, JR .
JOURNAL OF CELL BIOLOGY, 2000, 151 (01) :15-27
[9]   CLIP170-like tip1p spatially organizes microtubular dynamics in fission yeast [J].
Brunner, D ;
Nurse, P .
CELL, 2000, 102 (05) :695-704
[10]   Signal transduction: hanging on a scaffold [J].
Burack, WR ;
Shaw, AS .
CURRENT OPINION IN CELL BIOLOGY, 2000, 12 (02) :211-216