In the complex family of heat stress transcription factors, HSfA1 has a unique role as master regulator of thermotolerance in tomato

被引:432
作者
Mishra, SK [1 ]
Tripp, J [1 ]
Winkelhaus, S [1 ]
Tschiersch, B [1 ]
Theres, K [1 ]
Nover, L [1 ]
Scharf, KD [1 ]
机构
[1] Goethe Univ Frankfurt, Bioctr, D-60439 Frankfurt, Germany
关键词
posttranscriptional gene silencing; heat stress transcription factors; chaperones; siRNA; tomato; thermotolerance;
D O I
10.1101/gad.228802
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
We generated transgenic tomato plants with altered expression of heat stress transcription factor HsfA1. Plants with 10-fold overexpression of HsfA1 (OE plants) were characterized by a single HsfA1 transgene cassette, whereas plants harboring a tandem inverted repeat of the cassette showed cosuppression (CS plants) by posttranscriptional silencing of the HsfA1 gene connected with formation of small interfering RNAs. Under normal growth conditions, major developmental parameters were similar for wild-type (WT), OE, and CS plants. However, CS plants and fruits were extremely sensitive to elevated temperatures, because heat stress-induced synthesis of chaperones and Hsfs was strongly reduced or lacking. Despite the complexity of the plant Hsf family with at least 17 members in tomato, HsfA1 has a unique function as master regulator for induced thermotolerance. Using transient reporter assays with mesophyll protoplasts front WT tomato, we demonstrated that plasmid-encoded HsfA1 and HsfA2 were well expressed. However, in CS protoplasts the cosuppression phenomenon was faithfully reproduced. Only transformation with HsfA2 expression plasmid led to normal expression of the transcription factor and reporter gene activation, whereas even high amounts of HsfA1 expression plasmids were silenced. Thermotolerance in CS protoplasts was restored by plasmid-borne HsfA2, resulting in expression of chaperones, thermoprotection of firefly luciferase, and assembly of heat stress granules.
引用
收藏
页码:1555 / 1567
页数:13
相关论文
共 57 条
[1]   Roles of molecular chaperones in cytoplasmic protein folding [J].
Agashe, VR ;
Hartl, FU .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2000, 11 (01) :15-25
[2]   microRNAs: Tiny regulators with great potential [J].
Ambros, V .
CELL, 2001, 107 (07) :823-826
[3]  
Ausubel FM., 1993, Current Protocols in Molecular Biology
[4]   NEW PLANT BINARY VECTORS WITH SELECTABLE MARKERS LOCATED PROXIMAL TO THE LEFT T-DNA BORDER [J].
BECKER, D ;
KEMPER, E ;
SCHELL, J ;
MASTERSON, R .
PLANT MOLECULAR BIOLOGY, 1992, 20 (06) :1195-1197
[5]   Isolation and characterization of HsfA3, a new heat stress transcription factor of Lycopersicon peruvianum [J].
Bharti, K ;
Schmidt, E ;
Lyck, R ;
Heerklotz, D ;
Bublak, D ;
Scharf, KD .
PLANT JOURNAL, 2000, 22 (04) :355-365
[6]   Heat stress transcription factors from tomato can functionally replace HSF1 in the yeast Saccharomyces cerevisiae [J].
Boscheinen, O ;
Lyck, R ;
Queitsch, C ;
Treuter, E ;
Zimarino, V ;
Scharf, KD .
MOLECULAR AND GENERAL GENETICS, 1997, 255 (03) :322-331
[7]   BIPARTITE SIGNAL SEQUENCE MEDIATES NUCLEAR TRANSLOCATION OF THE PLANT POTYVIRAL NLA PROTEIN [J].
CARRINGTON, JC ;
FREED, DD ;
LEINICKE, AJ .
PLANT CELL, 1991, 3 (09) :953-962
[8]   The role of AHA motifs in the activator function of tomato heat stress transcription factors HsfA1 and HsfA2 [J].
Döring, P ;
Treuter, E ;
Kistner, C ;
Lyck, R ;
Chen, A ;
Nover, L .
PLANT CELL, 2000, 12 (02) :265-278
[9]   The dynamics of Hsp25 quaternary structure - Structure and function of different oligomeric species [J].
Ehrnsperger, M ;
Lilie, H ;
Gaestel, M ;
Buchner, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (21) :14867-14874
[10]   Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation [J].
Ehrnsperger, M ;
Graber, S ;
Gaestel, M ;
Buchner, J .
EMBO JOURNAL, 1997, 16 (02) :221-229