Bayesian posterior estimation of logit parameters with small samples

被引:22
作者
Galindo-Garre, F [1 ]
Vermunt, JK [1 ]
Bergsma, WP [1 ]
机构
[1] Tilburg Univ, Dept Methodol & Stat, Tilburg, Netherlands
关键词
small samples; logit models; Bayesian estimation; prior distributions;
D O I
10.1177/0049124104265997
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
When the sample size is small compared to the number of cells in a contingency table, maximum likelihood estimates of logit parameters and their associated standard errors may not exist or may be biased. This problem is usually solved by "smoothing" the estimates, assuming a certain prior distribution for the parameters. This article investigates the performance of point and interval estimates obtained by assuming various prior distributions. The authors focus on two logit parameters of a 2 x 2 x 2 table: the interaction effect of two predictors on a response variable and the main effect of one of two predictors on a response variable, under the assumption that the interaction effect is zero. The results indicate the superiority of the posterior mode to the posterior mean.
引用
收藏
页码:88 / 117
页数:30
相关论文
共 17 条
[1]   Approximate is better than "exact" for interval estimation of binomial proportions [J].
Agresti, A ;
Coull, BA .
AMERICAN STATISTICIAN, 1998, 52 (02) :119-126
[2]  
[Anonymous], 2011, Categorical data analysis
[3]  
Bishop M.M., 1975, DISCRETE MULTIVARIAT
[4]   Interval estimation for a binomial proportion - Comment - Rejoinder [J].
Brown, LD ;
Cai, TT ;
DasGupta, A ;
Agresti, A ;
Coull, BA ;
Casella, G ;
Corcoran, C ;
Mehta, C ;
Ghosh, M ;
Santner, TJ ;
Brown, LD ;
Cai, TT ;
DasGupta, A .
STATISTICAL SCIENCE, 2001, 16 (02) :101-133
[5]   SOME COMMON PROBLEMS IN LOG-LINEAR ANALYSIS [J].
CLOGG, CC ;
ELIASON, SR .
SOCIOLOGICAL METHODS & RESEARCH, 1987, 16 (01) :8-44
[6]   MULTIPLE IMPUTATION OF INDUSTRY AND OCCUPATION CODES IN CENSUS PUBLIC-USE SAMPLES USING BAYESIAN LOGISTIC-REGRESSION [J].
CLOGG, CC ;
RUBIN, DB ;
SCHENKER, N ;
SCHULTZ, B ;
WEIDMAN, L .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1991, 86 (413) :68-78
[7]  
Congdon P, 2001, BAYESIAN STAT MODELL
[8]  
Gelman A, 2013, BAYESIAN DATA ANAL, DOI DOI 10.1201/9780429258411
[9]   A LANGUAGE AND PROGRAM FOR COMPLEX BAYESIAN MODELING [J].
GILKS, WR ;
THOMAS, A ;
SPIEGELHALTER, DJ .
STATISTICIAN, 1994, 43 (01) :169-177
[10]   LOG-LINEAR MODELS FOR FREQUENCY DATA - SUFFICIENT STATISTICS AND LIKELIHOOD EQUATIONS [J].
HABERMAN, SJ .
ANNALS OF STATISTICS, 1973, 1 (04) :617-632