David and Goliath: what can the tiny weed Arabidopsis teach us to improve biomass production in crops?

被引:79
作者
Gonzalez, Nathalie [1 ,2 ]
Beemster, Gerrit T. S. [1 ,2 ,3 ]
Inze, Dirk [1 ,2 ]
机构
[1] VIB, Dept Plant Syst Biol, B-9052 Ghent, Belgium
[2] Univ Ghent, Dept Mol Genet, B-9052 Ghent, Belgium
[3] Univ Antwerp, Dept Biol, B-2020 Antwerp, Belgium
关键词
PLANT ORGAN SIZE; GIBBERELLIN; 20-OXIDASE; DEOXYHYPUSINE SYNTHASE; CELL-PROLIFERATION; ECTOPIC EXPRESSION; GENE FAMILY; H+-PPASE; GROWTH; LEAF; TRANSCRIPTION;
D O I
10.1016/j.pbi.2008.11.003
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
In the next decades, the world market for plant-derived products is expected to expand exponentially. Not only do we rely on plants to feed the growing world population, but plants will also play a pivotal role in providing a significant part of our increasing energy demands. Whereas in the 1960s the green revolution contributed to increase plant productivity, it is expected that biotechnological advances will further boost biomass production and plant yield. To do this effectively, it will be necessary to understand how the molecular machinery that determines yield parameters operates. Although of no direct economic significance, the model plant Arabidopsis can be used to find genes and regulatory networks controlling biomass production, which, in turn, can be applied for further growth improvement in other species including cereals.
引用
收藏
页码:157 / 164
页数:8
相关论文
共 58 条
[1]   Control of plant organ size by KLUH/CYP78A5-dependent intercellular signaling [J].
Anastasiou, Elena ;
Kenz, Sabine ;
Gerstung, Moritz ;
MacLean, Daniel ;
Timmer, Jens ;
Fleck, Christian ;
Lenhard, Michael .
DEVELOPMENTAL CELL, 2007, 13 (06) :843-856
[2]   Feeding a hungry world [J].
Borlaug, Norman .
SCIENCE, 2007, 318 (5849) :359-359
[3]   Regulating the regulators: The future prospects for transcription-factor-based agricultural biotechnology products [J].
Century, Karen ;
Reuber, T. Lynne ;
Ratcliffe, Oliver J. .
PLANT PHYSIOLOGY, 2008, 147 (01) :20-29
[4]   Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana [J].
Cho, HT ;
Cosgrove, DJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (17) :9783-9788
[5]   Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis [J].
Choe, S ;
Fujioka, S ;
Noguchi, T ;
Takatsuto, S ;
Yoshida, S ;
Feldmann, KA .
PLANT JOURNAL, 2001, 26 (06) :573-582
[6]   Regulation of expansin gene expression affects growth and development in transgenic rice plants [J].
Choi, DS ;
Lee, Y ;
Cho, HT ;
Kende, H .
PLANT CELL, 2003, 15 (06) :1386-1398
[7]   The rotunda2 mutants identify a role for the LEUNIG gene in vegetative leaf morphogenesis [J].
Cnops, G ;
Jover-Gil, S ;
Peters, JL ;
Neyt, P ;
De Block, S ;
Robles, P ;
Ponce, MR ;
Gerats, T ;
Van Lijsebettens, M ;
Micol, JL .
JOURNAL OF EXPERIMENTAL BOTANY, 2004, 55 (402) :1529-1539
[8]   Modification of gibberellin production and plant development in Arabidopsis by sense and antisense expression of gibberellin 20-oxidase genes [J].
Coles, JP ;
Phillips, AL ;
Croker, SJ ;
García-Lepe, R ;
Lewis, MJ ;
Hedden, P .
PLANT JOURNAL, 1999, 17 (05) :547-556
[9]   EXORDIUM regulates brassinosteroid-responsive genes [J].
Coll-Garcia, D ;
Mazuch, J ;
Altmann, T ;
Müssig, C .
FEBS LETTERS, 2004, 563 (1-3) :82-86
[10]   Breeding for high water-use efficiency [J].
Condon, AG ;
Richards, RA ;
Rebetzke, GJ ;
Farquhar, GD .
JOURNAL OF EXPERIMENTAL BOTANY, 2004, 55 (407) :2447-2460