Crystallite Size Dependence of Lithium Intercalation in Nanocrystalline Rutile

被引:38
作者
Milne, Nicholas A. [2 ]
Skyllas-Kazacos, Maria [2 ]
Luca, Vittorio [1 ]
机构
[1] Australian Nucl Sci & Technol Org, Inst Mat Engn, Menai, NSW 2234, Australia
[2] Ctr Electrochem & Minerals Proc, Sch Chem Sci & Engn, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
SMALL SEMICONDUCTOR CRYSTALLITES; TITANIUM-DIOXIDE; TIO2; ANATASE; 1ST PRINCIPLES; LI-INSERTION; ELECTRICAL-CONDUCTIVITY; ELECTRODE MATERIALS; LI4TI5O12; SPINEL; ROOM-TEMPERATURE; BATTERIES;
D O I
10.1021/jp8087995
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An electrochemical investigation has been undertaken into the dependence of particle size on the mechanism of lithium intercalation in rutile. A thoroughly characterized suite of rutile nanoparticles with diameters in the broad size range 4-50 nm was used in the study. Variation in the cyclic voltammetry of rutile over cycling is presented for the first time and numerous new electrode reactions identified. While a crystallite size effect was witnessed during fast voltammetry experiments, this effect disappeared as the rate was reduced and no variation in capacity was witnessed in galvanostatic cycling experiments. The intercalation potential was seen to increase with decreasing crystallite size, the opposite of what was predicted from quantum confinement, Enhanced lithium intercalation into the smaller nanoparticles has been ascribed to the slightly expanded structure of smaller nanocrystals relative to larger ones taking the dimensions of the tunnels into which Li inserts beyond a threshold value. This lattice expansion or volume dilation with decreasing crystallite size is due to the expected increase in surface tension with decreasing crystallite size. This would correspondingly increase the intercalation potential as the crystallite size decreased.
引用
收藏
页码:12983 / 12995
页数:13
相关论文
共 70 条
[1]   Chemical and electrochemical Li-insertion into the Li4Ti5O12 spinel [J].
Aldon, L ;
Kubiak, P ;
Womes, M ;
Jumas, JC ;
Olivier-Fourcade, J ;
Tirado, JL ;
Corredor, JI ;
Vicente, CP .
CHEMISTRY OF MATERIALS, 2004, 16 (26) :5721-5725
[2]   PHOTOCATALYTIC HYDROGENATION OF CH3CCH WITH H2O ON SMALL-PARTICLE TIO2 - SIZE QUANTIZATION EFFECTS AND REACTION INTERMEDIATES [J].
ANPO, M ;
SHIMA, T ;
KODAMA, S ;
KUBOKAWA, Y .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (16) :4305-4310
[3]   TiO2-B nanowires as negative electrodes for rechargeable lithium batteries [J].
Armstrong, AR ;
Armstrong, G ;
Canales, J ;
Bruce, PG .
JOURNAL OF POWER SOURCES, 2005, 146 (1-2) :501-506
[4]   Lithium-ion intercalation into TiO2-B nanowires [J].
Armstrong, AR ;
Armstrong, G ;
Canales, J ;
García, R ;
Bruce, PG .
ADVANCED MATERIALS, 2005, 17 (07) :862-+
[5]   THE APPLICATION OF EQCM TO THE STUDY OF THE ELECTROCHEMICAL-BEHAVIOR OF PROPYLENE CARBONATE SOLUTIONS [J].
AURBACH, D ;
ZABAN, A .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1995, 393 (1-2) :43-53
[6]   RAMAN-SPECTRA OF TITANIUM-DIOXIDE [J].
BALACHANDRAN, U ;
EROR, NG .
JOURNAL OF SOLID STATE CHEMISTRY, 1982, 42 (03) :276-282
[7]  
Bard A.J., 2001, ELECTROCHEMICAL METH
[8]   Structural evolution during the reaction of Li with nano-sized rutile type TiO2 at room temperature [J].
Baudrin, E. ;
Cassaignon, S. ;
Koesch, M. ;
Jolivet, J. -P. ;
Dupont, L. ;
Tarascon, J. -M. .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (02) :337-342
[9]  
Bokhimi X, 2002, J SOLID STATE CHEM, V169, P176, DOI 10.1006/S0022-4596(02)00046-4
[10]   Structural studies of rutile-type metal dioxides [J].
Bolzan, AA ;
Fong, C ;
Kennedy, BJ ;
Howard, CJ .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS, 1997, 53 :373-380