Flexible and Transparent Metallic Grid Electrodes Prepared by Evaporative Assembly

被引:120
作者
Park, Jae Hoon [1 ]
Lee, Dong Yun [4 ]
Kim, Young-Hoon [5 ]
Kim, Jung Kyu [1 ,2 ]
Lee, Jung Heon [1 ,3 ]
Park, Jong Hyeok [1 ,2 ]
Lee, Tae-Woo [5 ]
Cho, Jeong Ho [1 ,2 ]
机构
[1] Sungkyunkwan Univ, SKKU Adv Inst Nanotechnol SAINT, Suwon 440746, South Korea
[2] Sungkyunkwan Univ, Sch Chem Engn, Suwon 440746, South Korea
[3] Sungkyunkwan Univ, Sch Adv Mat Sci & Engn, Suwon 440746, South Korea
[4] Samsung Adv Inst Technol, Mat Res Ctr, Suwon 443803, South Korea
[5] Pohang Univ Sci & Technol POSTECH, Dept Mat Sci & Engn, Pohang 790784, South Korea
基金
新加坡国家研究基金会;
关键词
metal grid electrode; evaporative assembly; flow coating; transparent electrode; organic electronic device; LIGHT-EMITTING-DIODES; OPTICAL-PROPERTIES; GRAPHENE FILMS; SOLAR-CELLS; LARGE-AREA; NANOWIRE; FLOW; EXTRACTION; RIBBONS; LAYER;
D O I
10.1021/am502233y
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We propose a novel approach to fabricating flexible transparent metallic grid electrodes via evaporative deposition involving flow-coating. A transparent flexible metal grid electrode was fabricated through four essential steps including: (1) polymer line pattern formation on the thermally evaporated metal layer onto a plastic substrate; (ii) rotation of the stage by 90 and the formation of the second polymer line pattern; (iii) etching of the unprotected metal region; and (iv) removal of the residual polymer from the metal grid pattern. Both the metal grid width and the spacing were systematically controlled by varying the concentration of the polymer solution and the moving distance between intermittent stop times polymer blade. The optimized Au grid electrodes exhibited an optical transmittance of 92% at 550 nm and a sheet resistance of 97 Omega/sq. The resulting metallic grid electrodes were successfully applied to various organic electronic devices, such as organic field-effect transistors (OFETs), organic light-emitting diodes (OLEDs), and organic solar cells (OSCs).
引用
收藏
页码:12380 / 12387
页数:8
相关论文
共 54 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[2]   Carbon nanotube-based organic light emitting diodes [J].
Bansal, Malti ;
Srivastava, Ritu ;
Lal, C. ;
Kamalasanan, M. N. ;
Tanwar, L. S. .
NANOSCALE, 2009, 1 (03) :317-330
[3]   Graphene-based liquid crystal device [J].
Blake, Peter ;
Brimicombe, Paul D. ;
Nair, Rahul R. ;
Booth, Tim J. ;
Jiang, Da ;
Schedin, Fred ;
Ponomarenko, Leonid A. ;
Morozov, Sergey V. ;
Gleeson, Helen F. ;
Hill, Ernie W. ;
Geim, Andre K. ;
Novoselov, Kostya S. .
NANO LETTERS, 2008, 8 (06) :1704-1708
[4]   Solar-blind UV photodetectors for large area applications [J].
Caputo, D ;
deCesare, G ;
Irrera, F ;
Palma, F .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1996, 43 (09) :1351-1356
[5]   Visibly Transparent Polymer Solar Cells Produced by Solution Processing [J].
Chen, Chun-Chao ;
Dou, Letian ;
Zhu, Rui ;
Chung, Choong-Heui ;
Song, Tze-Bin ;
Zheng, Yue Bing ;
Hawks, Steve ;
Li, Gang ;
Weiss, Paul S. ;
Yang, Yang .
ACS NANO, 2012, 6 (08) :7185-7190
[6]   Capillary flow as the cause of ring stains from dried liquid drops [J].
Deegan, RD ;
Bakajin, O ;
Dupont, TF ;
Huber, G ;
Nagel, SR ;
Witten, TA .
NATURE, 1997, 389 (6653) :827-829
[7]   High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid [J].
Ghosh, D. S. ;
Chen, T. L. ;
Pruneri, V. .
APPLIED PHYSICS LETTERS, 2010, 96 (04)
[8]  
Han TH, 2012, NAT PHOTONICS, V6, P105, DOI [10.1038/NPHOTON.2011.318, 10.1038/nphoton.2011.318]
[9]   Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures [J].
Hecht, David S. ;
Hu, Liangbing ;
Irvin, Glen .
ADVANCED MATERIALS, 2011, 23 (13) :1482-1513
[10]   Formation of Large-Scale Flexible Transparent Conductive Films Using Evaporative Migration Characteristics of Au Nanoparticles [J].
Higashitani, Ko ;
McNamee, Cathy E. ;
Nakayama, Masaki .
LANGMUIR, 2011, 27 (06) :2080-2083