Cytochrome c oxidase is a redox-driven proton pump. The enzyme has two proton input pathways, leading from the solution on the N-side to the binuclear center. One of these pathways, the K-pathway, is used for proton uptake upon reduction of the binuclear center. It is also important for local charge compensation during reaction of the fully reduced enzyme with O-2. Two different locations have been proposed to constitute the entry point of the K-pathway: near S(I-299) or near E(II-101), respectively, in the Rhodobacter sphaeroides enzyme. The experiments discussed in this study are aimed at identifying the location of the entry point. The kinetics and extent of flash-induced proton release coupled to oxidation of heme a(3) (tau congruent to 2 ms at pH 8.8 in the wild-type enzyme) in the absence of O-2 were investigated in the ED(II-101), SD(I-299), and KM(I-362) mutant enzymes, i.e., at the two proposed entry points and in the middle of the pathway, respectively. This reaction was completely blocked in KM(I-362), while it was slowed by factors of 25 and 40 in the ED(II-101) and SD(I-299) mutant enzymes, respectively. During reaction of the fully reduced enzyme with O-2, electron transfer from heme a to the catalytic site (during PR-formation) was blocked in the KM(I-362) and SD(I-299)/SG(I-299) but not in the ED(II-101)/EA(II-101) mutant enzymes. The results are interpreted as follows: Residue K(I-362) is involved in both proton transfer and charge compensation (in different reaction steps). The impaired proton release in the S(I-299) mutant enzymes is an indirect effect due to an altered environment of K(I-362). E(II-101), on the other hand, is likely to be part of the K-pathway since mutation of this residue results in impaired proton release but does not affect the PR formation kinetics; i.e., the properties of K(I-362) are not altered. Consequently, we conclude that the entry point of the K-pathway is located near E(II-101).