An averaging theorem for time-periodic degree zero homogeneous differential equations

被引:16
作者
MCloskey, RT
机构
[1] Mech. and Aerosp. Eng. Department, University of California, Los Angeles
关键词
homogeneous; time-periodic; averaging; dilation; non-Lipschitz;
D O I
10.1016/S0167-6911(97)00070-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the stability of the differential equation (x) over dot=epsilon X(t,x,epsilon), x is an element of R-n, where X(t,x,epsilon) is a time-periodic, degree zero homogeneous vector field and epsilon>0 is a parameter. It is shown that asymptotic stability of the time-averaged equation implies asymptotic stability of the original system for epsilon sufficiently small. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:179 / 183
页数:5
相关论文
共 19 条
[1]  
[Anonymous], 1983, DIFFERENTIAL GEOMETR
[2]  
ANOSOV DV, 1988, DYNAMICAL SYSTEMS, V1
[3]  
GOODMAN R, 1976, LECTURE NOTES MATH, V562
[4]   ASYMPTOTICALLY STABILIZING FEEDBACK CONTROLS [J].
HERMES, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 92 (01) :76-89
[5]   NILPOTENT AND HIGH-ORDER APPROXIMATIONS OF VECTOR FIELD SYSTEMS [J].
HERMES, H .
SIAM REVIEW, 1991, 33 (02) :238-264
[6]  
HERMES H, 1989, LECTURE NOTES PURE A, V127, P249
[7]  
KAWSKI M, 1990, CONTR-THEOR ADV TECH, V6, P497
[8]  
KAWSKI M, 1989, IEEE CONTROL DECISIO, P1370
[9]  
Koteljanskii D.M., 1963, AM MATH SOC TRANSL, V27, P19, DOI [10.1090/trans2/027/03, DOI 10.1090/TRANS2/024/04]
[10]  
Leonard NE, 1995, PROCEEDINGS OF THE 34TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, P3980, DOI 10.1109/CDC.1995.479226