Seasonal trends of concentration and size distribution of ultrafine particles near major highways in Los Angeles

被引:148
作者
Zhu, YF
Hinds, WC
Shen, S
Sioutas, C
机构
[1] Univ Calif Los Angeles, Sch Publ Hlth,Ctr Occupat & Environm Hlth, Dept Environm Hlth Sci, So Calif Particle Ctr & Supersite, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Civil & Environm Engn, So Calif Particle Ctr & Supersite, Los Angeles, CA 90095 USA
关键词
D O I
10.1080/02786820390229156
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Ultrafine particles (diameter <0.1 mum) have been suggested as a possible causative agent for the observed increases in mortality and morbidity with increases in particulate matter (PM) concentration. Zhu et al. conducted systematic measurements of the concentration and size distribution of ultrafine particles in the vicinity of Interstate 405 (mostly gasoline traffic) and Interstate 710 (large proportion of heavy-duty diesel traffic) in Los Angeles during the summer of 2001. The present study compares these measurements with those made at the same locations in the winter of 2001-2002. Particle number concentration and size distribution in the size range from 6 to 220 nm were measured by a condensation particle counter (CPC) and a scanning mobility particle sizer (SMPS). Measurements were taken at five distances downwind from the freeway. At each sampling location, concentrations of carbon monoxide (CO) and black carbon (BC) were also measured by a Dasibi CO monitor and an aethalometer, respectively. Average temperatures were about 7 degrees Celsius higher in summer than in winter. Wind directions are the same for both seasons, wind speeds are slightly higher in summer. Traffic densities were not statistically different between summer and winter for both the 405 and 710 freeways. The decay rates of CO and BC are slightly greater in summer than in winter for both freeways, suggesting a weaker atmospheric dilution effect in winter. Particle number concentration in the size range of 6-12 nm is significantly higher in winter than in summer. The associated concentration in that size range decreased at a slower rate in winter than in summer. The surface area concentrations in the size range of 6-220 nm are consistently higher in summer for all sampling locations. These results suggest that wintertime conditions favor greater particle formation, possibly due to increased condensation of organic vapors. These data may be useful to estimate exposure to ultrafine particles in the vicinity of major highways for epidemiological studies and to evaluate the adverse health effects of such particles.
引用
收藏
页码:5 / 13
页数:9
相关论文
共 32 条
[1]   Physicochemical characterisation of diesel exhaust particles:: Factors for assessing biological activity [J].
Bérubé, KA ;
Jones, TP ;
Williamson, BJ ;
Winters, C ;
Morgan, AJ ;
Richards, RJ .
ATMOSPHERIC ENVIRONMENT, 1999, 33 (10) :1599-1614
[2]   Characterization of particles in combustion engine exhaust [J].
Burtscher, H ;
Kunzel, S ;
Huglin, C .
JOURNAL OF AEROSOL SCIENCE, 1998, 29 (04) :389-396
[3]  
*CAL AIR RES BOARD, 2000, PUBL M CONS APPR REV
[4]   AN ASSOCIATION BETWEEN AIR-POLLUTION AND MORTALITY IN 6 UNITED-STATES CITIES [J].
DOCKERY, DW ;
POPE, CA ;
XU, XP ;
SPENGLER, JD ;
WARE, JH ;
FAY, ME ;
FERRIS, BG ;
SPEIZER, FE .
NEW ENGLAND JOURNAL OF MEDICINE, 1993, 329 (24) :1753-1759
[5]  
FINLAYSONPITTS BJ, 2000, CHEM UPPER LOWER AT
[6]  
FRIEDLANDER SK, 2000, SMOKE DUSK HAZE FUND
[7]   FREE-RADICAL GENERATION AT THE SOLID/LIQUID INTERFACE IN IRON-CONTAINING MINERALS [J].
FUBINI, B ;
MOLLO, L ;
GIAMELLO, E .
FREE RADICAL RESEARCH, 1995, 23 (06) :593-614
[8]   Adverse health effects of PM(10) particles: Involvement of iron in generation of hydroxyl radical [J].
Gilmour, PS ;
Brown, DM ;
Lindsay, TG ;
Beswick, PH ;
MacNee, W ;
Donaldson, K .
OCCUPATIONAL AND ENVIRONMENTAL MEDICINE, 1996, 53 (12) :817-822
[9]   The characteristics of PM2.5 in Beijing, China [J].
He, KB ;
Yang, FM ;
Ma, YL ;
Zhang, Q ;
Yao, XH ;
Chan, CK ;
Cadle, S ;
Chan, T ;
Mulawa, P .
ATMOSPHERIC ENVIRONMENT, 2001, 35 (29) :4959-4970
[10]  
Hinds W. C., 1999, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, DOI [10.1016/0021-8502(83)90049-6, DOI 10.1016/0021-8502(83)90049-6]