Pho86p, an endoplasmic reticulum (ER) resident protein in Saccharomyces cerevisiae, is required for ER exit of the high-affinity phosphate transporter Pho84p

被引:65
作者
Lau, WTW
Howson, RW
Malkus, P
Schekman, R
O'Shea, EK [1 ]
机构
[1] Univ Calif San Francisco, Program Biophys, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94143 USA
[3] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
关键词
D O I
10.1073/pnas.97.3.1107
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the budding yeast Saccharomyces cerevisiae, PHO84 and PHO86 are among the genes that are most highly induced in response to phosphate starvation. They are essential for growth when phosphate is limiting, and they function in the high-affinity phosphate uptake system. PHO84 encodes a high-affinity phosphate transporter, and mutations in PHO86 cause many of the same phenotypes as mutations in PHO84, including a phosphate uptake defect and constitutive expression of the secreted acid phosphatase, Pho5p. Here, we show that the subcellular localization of Pho84p is regulated in response to extracellular phosphate levels; it is localized to the plasma membrane in low-phosphate medium but quickly endocytosed and transported to the vacuole upon addition of phosphate to the medium. Moreover, Pho84p is localized to the endoplasmic reticulum (ER) and fails to be targeted to the plasma membrane in the absence of Pho86p. Utilizing an in vitro vesicle budding assay, we demonstrate that Pho86p is required for packaging of Pho84p into COPII vesicles. Pho86p is an ER resident protein, which itself is not transported out of the ER. Interestingly, the requirement of Pho86p for ER exit is specific to Pho84p, because other members of the hexose transporter family to which Pho84 belongs are not mislocalized in the absence of Pho86p.
引用
收藏
页码:1107 / 1112
页数:6
相关论文
共 33 条
[1]  
Ausubel FM., 1993, Current Protocols in Molecular Biology
[2]   COPII and selective export from the endoplasmic reticulum [J].
Barlowe, C .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 1998, 1404 (1-2) :67-76
[3]   EXPRESSION AND PURIFICATION OF THE HIGH-AFFINITY PHOSPHATE TRANSPORTER OF SACCHAROMYCES-CEREVISIAE [J].
BERHE, A ;
FRISTEDT, U ;
PERSSON, BL .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1995, 227 (1-2) :566-572
[4]   THE PHO84 GENE OF SACCHAROMYCES-CEREVISIAE ENCODES AN INORGANIC-PHOSPHATE TRANSPORTER [J].
BUNYA, M ;
NISHIMURA, M ;
HARASHIMA, S ;
OSHIMA, Y .
MOLECULAR AND CELLULAR BIOLOGY, 1991, 11 (06) :3229-3238
[5]   Two new genes, PHO86 and PHO87, involved in inorganic phosphate uptake in Saccharomyces cerevisiae [J].
BunYa, M ;
Shikata, K ;
Nakade, S ;
Yompakdee, C ;
Harashima, S ;
Oshima, Y .
CURRENT GENETICS, 1996, 29 (04) :344-351
[6]   TARGETING OF THE YEAST PLASMA-MEMBRANE [H+]ATPASE - A NOVEL GENE AST1 PREVENTS MISLOCALIZATION OF MUTANT ATPASE TO THE VACUOLE [J].
CHANG, A ;
FINK, GR .
JOURNAL OF CELL BIOLOGY, 1995, 128 (1-2) :39-49
[7]   Assembly of the yeast vacuolar H+-ATPase occurs in the endoplasmic reticulum and requires a Vma12p/Vma22p assembly complex [J].
Graham, LA ;
Hill, KJ ;
Stevens, TH .
JOURNAL OF CELL BIOLOGY, 1998, 142 (01) :39-49
[8]   A PHOSPHATE TRANSPORTER FROM THE MYCORRHIZAL FUNGUS GLOMUS VERSIFORME [J].
HARRISON, MJ ;
VANBUUREN, ML .
NATURE, 1995, 378 (6557) :626-629
[9]   Out of the ER - outfitters, escorts and guides [J].
Herrmann, JM ;
Malkus, P ;
Schekman, R .
TRENDS IN CELL BIOLOGY, 1999, 9 (01) :5-7
[10]   The yeast proteome database (YPD): a model for the organization and presentation of genome-wide functional data [J].
Hodges, PE ;
McKee, AHZ ;
Davis, BP ;
Payne, WE ;
Garrels, JI .
NUCLEIC ACIDS RESEARCH, 1999, 27 (01) :69-73