The generalized-α method in mechatronic applications

被引:19
作者
Bruels, Olivier [1 ]
Golinval, Jean-Claude [1 ]
机构
[1] Univ Liege, LTAS Vibrat & Identificat Struct, B-4000 Liege, Belgium
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2006年 / 86卷 / 10期
关键词
generalized-alpha method; multidisciplinary simulation; mechatronics; finite element method; block diagram language;
D O I
10.1002/zamm.200610283
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents an extension of the generalized-a time-integrator to mechatronic systems represented by coupled first and second-order DAEs. A simple reformulation of those equations as full second-order DAEs allows the implementation of a monolithic integration scheme, so that the numerical dissipation properties are preserved, and second-order accuracy is obtained at least in the unconstrained case. The algorithmic parameters can be optimized either for the mechanical or the control subsystem. Two illustrative applications are treated in the fields of vehicle dynamics and robotics.
引用
收藏
页码:748 / 758
页数:11
相关论文
共 21 条
[1]  
[Anonymous], AM SOC CIV ENG P 1
[2]  
Brenan K.E., 1995, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations
[3]  
BRENAN KE, 1988, MATH COMPUT, V51, P659, DOI 10.1090/S0025-5718-1988-0930221-3
[4]  
BRULS O, 2006, UNPUB COMPUT METHODS
[5]  
Bruls O., 2005, THESIS U LIEGE BELGI
[6]  
Cardona A., 1994, Engineering Computations, V11, P365, DOI 10.1108/02644409410799344
[7]   TIME INTEGRATION OF THE EQUATIONS OF MOTION IN MECHANISM ANALYSIS [J].
CARDONA, A ;
GERADIN, M .
COMPUTERS & STRUCTURES, 1989, 33 (03) :801-820
[8]   A TIME INTEGRATION ALGORITHM FOR STRUCTURAL DYNAMICS WITH IMPROVED NUMERICAL DISSIPATION - THE GENERALIZED-ALPHA METHOD [J].
CHUNG, J ;
HULBERT, GM .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1993, 60 (02) :371-375
[9]   The analysis of the Generalized-α method for non-linear dynamic problems [J].
Erlicher, S ;
Bonaventura, L ;
Bursi, OS .
COMPUTATIONAL MECHANICS, 2002, 28 (02) :83-104
[10]  
Geradin M., 2015, MECH VIBRATIONS THEO