Cell shrinkage triggers the activation of mitogen-activated protein kinases by hypertonicity in the rat kidney medullary thick ascending limb of the Henle's loop -: Requirement of p38 kinase for the regulatory volume increase response

被引:75
作者
Roger, F [1 ]
Martin, PY [1 ]
Rousselot, M [1 ]
Favre, H [1 ]
Féraille, E [1 ]
机构
[1] Fdn Rech Med, Div Nephrol, CH-1211 Geneva 4, Switzerland
关键词
D O I
10.1074/jbc.274.48.34103
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The kidney medulla is exposed to very high interstitial osmolarity leading to the activation of mitogen-activated protein kinases (MAPK). However, the respective roles of increased intracellular osmolality and of cell shrinkage in MAPK activation are not known. Similarly, the participation of MAPK in the regulatory volume increase (RVI) following cell shrinkage remains to be investigated. In the rat medullary thick ascending limb of Henle (MTAL), extracellular hypertonicity produced by addition of NaCl or sucrose increased the phosphorylation level of extracellular signal-regulated kinase (ERK) and p38 kinase and to a lesser extent c-Jun NH2-terminal kinase with sucrose only. Both hypertonic solutions decreased the MTAL cellular volume in a dose-and time-dependent manner. In contrast, hypertonic urea had no effect, The extent of MAPK activation was correlated with the extent of MTAL cellular volume decrease. Increasing intracellular osmolality without modifying cellular volume did not activate MAPK, whereas cell shrinkage without variation in osmolality activated both ERK and p38, In the presence of 600 mosmol/liter NaCl, the maximal cell shrinkage was observed after 10 min at 37 degrees C and the MTAL cellular volume was reduced to 70% of its initial value. Then, RVI occurred and the cellular volume progressively recovered to reach about 90% of its initial value after 30 min. SB203580, a specific inhibitor of p38, almost completely inhibited the cellular volume recovery, whereas inhibition of ERK did not alter RVI. In conclusion, in rat MTAL: 1) cell shrinkage, but not intracellular hyperosmolality, triggers the activation of both ERK and p38 kinase in response to extracellular hypertonicity; and 2) RVI is dependent on p38 kinase activation.
引用
收藏
页码:34103 / 34110
页数:8
相关论文
共 35 条
[1]   Multiple mitogen-activated protein kinases are regulated by hyperosmolality in mouse IMCD cells [J].
Berl, T ;
Siriwardana, G ;
Ao, LL ;
Butterfield, LM ;
Heasley, LE .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 1997, 272 (03) :F305-F311
[2]   MOLECULAR-BASIS OF OSMOTIC REGULATION [J].
BURG, MB .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL FLUID AND ELECTROLYTE PHYSIOLOGY, 1995, 268 (06) :F983-F996
[3]  
CHANG PY, 1995, J BIOL CHEM, V270, P29928
[4]   Persistent activation of c-Jun N-terminal kinase 1 (JNK1) in gamma radiation-induced apoptosis [J].
Chen, YR ;
Meyer, CF ;
Tan, TH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (02) :631-634
[5]   RAS-DEPENDENT ACTIVATION OF MAP KINASE PATHWAY MEDIATED BY G-PROTEIN BETA-GAMMA-SUBUNITS [J].
CRESPO, P ;
XU, NZ ;
SIMONDS, WF ;
GUTKIND, JS .
NATURE, 1994, 369 (6479) :418-420
[6]   INACTIVATION OF GLYCOGEN-SYNTHASE KINASE-3 BY EPIDERMAL GROWTH-FACTOR IS MEDIATED BY MITOGEN-ACTIVATED PROTEIN KINASE/P90 RIBOSOMAL-PROTEIN S6 KINASE SIGNALING PATHWAY IN NIH/3T3 CELLS [J].
ELDARFINKELMAN, H ;
SEGER, R ;
VANDENHEEDE, JR ;
KREBS, EG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (03) :987-990
[7]  
FERBY IM, 1994, J BIOL CHEM, V269, P30485
[8]   ALPHA(2) ADRENERGIC-RECEPTOR SUBTYPES EXPRESSED IN CHINESE-HAMSTER OVARY CELLS ACTIVATE DIFFERENTIALLY MITOGEN-ACTIVATED PROTEIN-KINASE BY A P21(RAS) INDEPENDENT PATHWAY [J].
FLORDELLIS, CS ;
BERGUERAND, M ;
GOUACHE, P ;
BARBU, V ;
GAVRAS, H ;
HANDY, DE ;
BEREZIAT, G ;
MASLIAH, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (08) :3491-3494
[9]   INTERLEUKIN-1 ACTIVATES A NOVEL PROTEIN-KINASE CASCADE THAT RESULTS IN THE PHOSPHORYLATION OF HSP27 [J].
FRESHNEY, NW ;
RAWLINSON, L ;
GUESDON, F ;
JONES, E ;
COWLEY, S ;
HSUAN, J ;
SAKLATVALA, J .
CELL, 1994, 78 (06) :1039-1049
[10]   AN OSMOSENSING SIGNAL-TRANSDUCTION PATHWAY IN MAMMALIAN-CELLS [J].
GALCHEVAGARGOVA, Z ;
DERIJARD, B ;
WU, IH ;
DAVIS, RJ .
SCIENCE, 1994, 265 (5173) :806-808