Solution structure of the PDZ2 domain from human phosphatase hPTP1E and its interactions with C-terminal peptides from the Fas receptors

被引:57
作者
Kozlov, G
Gehring, K
Ekiel, I
机构
[1] Natl Res Council Canada, Biotechnol Res Inst, NMR Grp, Pharmacol Biotechnol Sector, Montreal, PQ H4P 2R2, Canada
[2] Natl Res Council Canada, Biotechnol Res Inst, Montreal Joint Ctr Struct Biol, Montreal, PQ H4P 2R2, Canada
[3] McGill Univ, Dept Biochem, Montreal, PQ H3G 1Y6, Canada
[4] McGill Univ, Montreal Joint Ctr Struct Biol, Montreal, PQ H3G 1Y6, Canada
关键词
D O I
10.1021/bi991913c
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The solution structure of the second PDZ domain (PDZ2) from human phosphatase hPTP1E has been determined using 2D and 3D heteronuclear NMR experiments. The binding of peptides derived from the C-terminus of the Fas receptor to PDZ2 was studied via changes in backbone peptide and protein resonances. The structure is based on a total of 1387 nonredundant experimental NMR restraints including 1261 interproton distance restraints, 45 backbone hydrogen bonds, and 81 torsion angle restraints. Analysis of 30 lowest-energy structures resulted in rmsd values of 0.41 +/- 0.09 Angstrom for backbone atoms (N, C alpha, C') and 1.08 +/- 0.10 Angstrom for all heavy atoms, excluding the disordered N- and C-termini. The hPTP1E PDZ2 structure is similar to known PDZ domain structures but contains two unique structural features. In the peptide binding domain, the first glycine of the GLGF motif is replaced by a serine. This serine appears to replace a bound water observed in PDZ crystal structures that hydrogen bonds to the bound peptide's C-terminus. The hPTP1E PDZ2 structure also contains an unusually large loop following strand PZ and proximal to the peptide binding site. This well-ordered loop folds back against the PDZ domain and contains several residues that undergo large amide chemical shift changes upon peptide binding. Direct observation of peptide resonances demonstrates that as many as six Fas peptide residues interact with the PDZ2 domain.
引用
收藏
页码:2572 / 2580
页数:9
相关论文
共 57 条
[1]   ASSOCIATION OF BIOMOLECULAR SYSTEMS VIA PULSED-FIELD GRADIENT NMR SELF-DIFFUSION MEASUREMENTS [J].
ALTIERI, AS ;
HINTON, DP ;
BYRD, RA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (28) :7566-7567
[2]   AN ALTERNATIVE 3D-NMR TECHNIQUE FOR CORRELATING BACKBONE N-15 WITH SIDE-CHAIN H-BETA-RESONANCES IN LARGER PROTEINS [J].
ARCHER, SJ ;
IKURA, M ;
TORCHIA, DA ;
BAX, A .
JOURNAL OF MAGNETIC RESONANCE, 1991, 95 (03) :636-641
[3]  
BANVILLE D, 1994, J BIOL CHEM, V269, P22320
[4]  
BARTELS C, 1995, J BIOMOL NMR, V5, P1
[5]   H-1-H-1 CORRELATION VIA ISOTROPIC MIXING OF C-13 MAGNETIZATION, A NEW 3-DIMENSIONAL APPROACH FOR ASSIGNING H-1 AND C-13 SPECTRA OF C-13-ENRICHED PROTEINS [J].
BAX, A ;
CLORE, GM ;
GRONENBORN, AM .
JOURNAL OF MAGNETIC RESONANCE, 1990, 88 (02) :425-431
[6]   Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha 1-syntrophin mediated by PDZ domains [J].
Brenman, JE ;
Chao, DS ;
Gee, SH ;
McGee, AW ;
Craven, SE ;
Santillano, DR ;
Wu, ZQ ;
Huang, F ;
Xia, HH ;
Peters, MF ;
Froehner, SC ;
Bredt, DS .
CELL, 1996, 84 (05) :757-767
[7]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[8]   Crystal structure of a PDZ domain [J].
Cabral, JHM ;
Petosa, C ;
Sutcliffe, MJ ;
Raza, S ;
Byron, O ;
Poy, F ;
Marfatia, SM ;
Chishti, AH ;
Liddington, RC .
NATURE, 1996, 382 (6592) :649-652
[9]   THE RAT-BRAIN POSTSYNAPTIC DENSITY FRACTION CONTAINS A HOMOLOG OF THE DROSOPHILA DISKS-LARGE TUMOR SUPPRESSOR PROTEIN [J].
CHO, KO ;
HUNT, CA ;
KENNEDY, MB .
NEURON, 1992, 9 (05) :929-942
[10]   Recent improvements of the ProDom database of protein domain families [J].
Corpet, F ;
Gouzy, J ;
Kahn, D .
NUCLEIC ACIDS RESEARCH, 1999, 27 (01) :263-267