Making the most of microarray data

被引:43
作者
Gaasterland, T [1 ]
Bekiranov, S [1 ]
机构
[1] Rockefeller Univ, Lab Computat Genom, New York, NY 10021 USA
关键词
D O I
10.1038/73392
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The impact of microarray technology on biology will depend on computational methods of data analysis. A supervised computer-learning method using support vector machines predicts gene function from expression data—and shows promise.
引用
收藏
页码:204 / 206
页数:3
相关论文
共 7 条
  • [1] AYCHAUDHURI S, 2000, P PAC S BIOC HON HAW, P452
  • [2] Clustering gene expression patterns
    Ben-Dor, A
    Shamir, R
    Yakhini, Z
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 1999, 6 (3-4) : 281 - 297
  • [3] BRAZMA A, 1 INT M MICR GEN EXP
  • [4] Knowledge-based analysis of microarray gene expression data by using support vector machines
    Brown, MPS
    Grundy, WN
    Lin, D
    Cristianini, N
    Sugnet, CW
    Furey, TS
    Ares, M
    Haussler, D
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (01) : 262 - 267
  • [5] Kohonen T., 1997, Self-organizing Maps, V2nd ed.
  • [6] VanBogelen RA, 1999, ELECTROPHORESIS, V20, P2149, DOI 10.1002/(SICI)1522-2683(19990801)20:11<2149::AID-ELPS2149>3.0.CO
  • [7] 2-N