Analyzing and synthesizing images by evolving curves with the Osher-Sethian method

被引:14
作者
Kimmel, R
Kiryati, N
Bruckstein, AM
机构
[1] TECHNION ISRAEL INST TECHNOL, DEPT ELECT ENGN, IL-32000 HAIFA, ISRAEL
[2] TECHNION ISRAEL INST TECHNOL, DEPT COMP SCI, IL-32000 HAIFA, ISRAEL
关键词
shape from shading; halftoning; offsets; distance maps; minimal geodesics; segmentation; numerical methods;
D O I
10.1023/A:1007970107971
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Numerical analysis of conservation laws plays an important role in the implementation of curve evolution equations. This paper reviews the relevant concepts in numerical analysis and the relation between curve evolution, Hamilton-Jacobi partial differential equations, and differential conservation laws. This close relation enables us to introduce finite difference approximations, based on the theory of conservation laws, into curve evolution. It is shown how curve evolution serves as a powerful tool for image analysis, and how these mathematical relations enable us to construct efficient and accurate numerical schemes. Some examples demonstrate the importance of the CFL condition as a necessary condition for the stability of the numerical schemes.
引用
收藏
页码:37 / 55
页数:19
相关论文
共 48 条
[1]   A FAST LEVEL SET METHOD FOR PROPAGATING INTERFACES [J].
ADALSTEINSSON, D ;
SETHIAN, JA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 118 (02) :269-277
[2]   IMAGE SELECTIVE SMOOTHING AND EDGE-DETECTION BY NONLINEAR DIFFUSION .2. [J].
ALVAREZ, L ;
LIONS, PL ;
MOREL, JM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (03) :845-866
[3]  
ALVAREZ L, 1993, ARCH RATIONAL MECH, V123
[4]   BIOLOGICAL SHAPE AND VISUAL SCIENCE .1. [J].
BLUM, H .
JOURNAL OF THEORETICAL BIOLOGY, 1973, 38 (02) :205-287
[5]   ON SHAPE FROM SHADING [J].
BRUCKSTEIN, AM .
COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1988, 44 (02) :139-154
[6]  
BRUCKSTEIN AM, 1994, P IEEE ICIP AUST TEX, V1, P11
[7]   A GEOMETRIC MODEL FOR ACTIVE CONTOURS IN IMAGE-PROCESSING [J].
CASELLES, V ;
CATTE, F ;
COLL, T ;
DIBOS, F .
NUMERISCHE MATHEMATIK, 1993, 66 (01) :1-31
[8]  
CASELLES V, 1995, FIFTH INTERNATIONAL CONFERENCE ON COMPUTER VISION, PROCEEDINGS, P694, DOI 10.1109/ICCV.1995.466871
[9]   COMPUTING MINIMAL-SURFACES VIA LEVEL SET CURVATURE FLOW [J].
CHOPP, DL .
JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 106 (01) :77-91
[10]   Global minimum for active contour models: A minimal path approach [J].
Cohen, LD ;
Kimmel, R .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1997, 24 (01) :57-78