Involvement of the carboxyl terminus of vertebrate poly(A) polymerase in U1A autoregulation and in the coupling of splicing and polyadenylation

被引:113
作者
Gunderson, SI [1 ]
Vagner, S [1 ]
PolycarpouSchwarz, M [1 ]
Mattaj, IW [1 ]
机构
[1] EUROPEAN MOL BIOL LAB,D-69117 HEIDELBERG,GERMANY
关键词
RNA processing; pre-mRNA splicing cleavage and polyadenylation; U1A protein; poly(A) polymerase;
D O I
10.1101/gad.11.6.761
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Interactions required for inhibition of poly(A) polymerase (PAP) by the U1 snRNP-specific U1A protein, a reaction whose function is to autoregulate U1A protein production, are examined. PAP inhibition requires a substrate RNA to which at least two molecules of U1A protein can bind tightly, but we demonstrate that the secondary structure of the RNA is not highly constrained. A mutational analysis reveals that the carboxy-terminal 20 amino acids of PAP are essential for its inhibition by the U1A-RNA complex. Remarkably, transfer of these amino acids to yeast PAP, which is otherwise not affected by U1A protein, is sufficient to confer U1A-mediated inhibition onto the yeast enzyme. A glutathione S-transferase fusion protein containing only these 20 PAP residues can interact in vitro with an RNA-U1A protein complex containing two U1A molecules, but not with one containing a single U1A protein, explaining the requirement for two U1A-binding sites on the autoregulatory RNA element. A mutational analysis of the U1A protein demonstrates that amino acids 103-119 are required for PAP inhibition. A monomeric synthetic peptide consisting of the conserved U1A amino acids from this region has no detectable effect on PAP activity. However, the same U1A peptide, when conjugated to BSA, inhibits vertebrate PAP. In addition to this activity, the U1A peptide-BSA conjugate specifically uncouples splicing and 3'-end formation in vitro without affecting uncoupled splicing or 3'-end cleavage efficiencies. This suggests that the carboxy-terminal region of PAP with which it interacts is involved not only in U1A autoregulation but also in the coupling of splicing and 3'-end formation.
引用
收藏
页码:761 / 773
页数:13
相关论文
共 63 条
  • [1] Specificity of ribonucleoprotein interaction determined by RNA folding during complex formation
    Allain, FHT
    Gubser, CC
    Howe, PWA
    Nagai, K
    Neuhaus, D
    Varani, G
    [J]. NATURE, 1996, 380 (6575) : 646 - 650
  • [2] Solution structure of the N-terminal RNP domain of U1A protein: The role of C-terminal residues in structure stability and RNA binding
    Avis, JM
    Allain, FHT
    Howe, PWA
    Varani, G
    Nagai, K
    Neuhaus, D
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1996, 257 (02) : 398 - 411
  • [3] BALLANTYNE S, 1995, RNA, V1, P64
  • [4] EXON RECOGNITION IN VERTEBRATE SPLICING
    BERGET, SM
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (06) : 2411 - 2414
  • [5] BIENROTH S, 1991, J BIOL CHEM, V266, P19768
  • [6] THE HUMAN U1 SNRNP-SPECIFIC U1A PROTEIN INHIBITS POLYADENYLATION OF ITS OWN PREMESSENGER RNA
    BOELENS, WC
    JANSEN, EJR
    VANVENROOIJ, WJ
    STRIPECKE, R
    MATTAJ, IW
    GUNDERSON, SI
    [J]. CELL, 1993, 72 (06) : 881 - 892
  • [7] CONSERVED STRUCTURES AND DIVERSITY OF FUNCTIONS OF RNA-BINDING PROTEINS
    BURD, CG
    DREYFUSS, G
    [J]. SCIENCE, 1994, 265 (5172) : 615 - 621
  • [8] 3' CLEAVAGE AND POLYADENYLATION OF MESSENGER-RNA PRECURSORS INVITRO REQUIRES A POLY(A) POLYMERASE, A CLEAVAGE FACTOR, AND A SNRNP
    CHRISTOFORI, G
    KELLER, W
    [J]. CELL, 1988, 54 (06) : 875 - 889
  • [9] The yeast splicing factor Mud13p is a commitment complex component and corresponds to CBP20 the small subunit of the nuclear cap-binding complex
    Colot, HV
    Stutz, F
    Rosbash, M
    [J]. GENES & DEVELOPMENT, 1996, 10 (13) : 1699 - 1708
  • [10] ACCURATE TRANSCRIPTION INITIATION BY RNA POLYMERASE-II IN A SOLUBLE EXTRACT FROM ISOLATED MAMMALIAN NUCLEI
    DIGNAM, JD
    LEBOVITZ, RM
    ROEDER, RG
    [J]. NUCLEIC ACIDS RESEARCH, 1983, 11 (05) : 1475 - 1489