Antisymmetric resonant mode and negative refraction in double-ring resonators under normal-to-plane incidence

被引:22
作者
Ding, P. [1 ,2 ,3 ]
Liang, E. J. [1 ,2 ]
Zhang, L. [1 ,2 ]
Zhou, Q. [1 ,2 ]
Yuan, Y. X. [1 ,2 ]
机构
[1] Zhengzhou Univ, Sch Phys Sci & Engn, Zhengzhou 450052, Peoples R China
[2] Zhengzhou Univ, Key Lab Mat Phys, Minist Educ China, Zhengzhou 450052, Peoples R China
[3] Zhengzhou Inst Aeronaut Ind Management, Dept Math & Phys, Zhengzhou 450015, Peoples R China
来源
PHYSICAL REVIEW E | 2009年 / 79卷 / 01期
关键词
light refraction; magnetic permeability; magneto-optical effects; metamaterials; optical resonators; HANDED METAMATERIALS; MAGNETIC RESPONSE;
D O I
10.1103/PhysRevE.79.016604
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Compared to metallic composite metamaterials of double split-ring resonators with wires, double-ring resonators without additional wires are simple to engineer. In this paper, we have numerically studied the transmittance of double split- and closed-ring resonators at normal-to-plane incidence and identified their fundamental resonance modes. It is found that the antisymmetric and symmetric resonance modes originate from the out-of-phase and in-phase oscillations of surface charges in the neighboring legs of the double-ring resonators, respectively. The coupling of the antiparallel induced currents in the neighboring legs gives rise to magnetic resonance and consequently negative permeability of the antisymmetric mode. The negative refraction transmission of the double-ring resonators at normal-to-plane incidence is verified by dispersion curve and wedge-shaped model simulations. Our study provides a route to negative refraction metamaterial design by using the antisymmetric resonance mode of the simple double-ring structure at normal-to-plane incidence which is of particular importance for the terahertz and infrared domain.
引用
收藏
页数:6
相关论文
共 26 条
[1]   Investigation of magnetic resonances for different split-ring resonator parameters and designs [J].
Aydin, K ;
Bulu, I ;
Guven, K ;
Kafesaki, M ;
Soukoulis, CM ;
Ozbay, E .
NEW JOURNAL OF PHYSICS, 2005, 7
[2]   Molding left- or right-handed metamaterials by stacked cutoff metallic hole arrays [J].
Beruete, Miguel ;
Campillo, I. ;
Navarro-Cia, Miguel ;
Falcone, Francisco ;
Ayza, Mario Sorolla .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2007, 55 (06) :1514-1521
[3]   Active terahertz metamaterial devices [J].
Chen, Hou-Tong ;
Padilla, Willie J. ;
Zide, Joshua M. O. ;
Gossard, Arthur C. ;
Taylor, Antoinette J. ;
Averitt, Richard D. .
NATURE, 2006, 444 (7119) :597-600
[4]  
Chen HS, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.057605
[5]  
Chen XD, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.016608
[6]   Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials [J].
Dolling, G ;
Enkrich, C ;
Wegener, M ;
Zhou, JF ;
Soukoulis, CM .
OPTICS LETTERS, 2005, 30 (23) :3198-3200
[7]   Numerical simulations of negative-index refraction in wedge-shaped metamaterials [J].
Dong, ZG ;
Zhu, SN ;
Liu, H ;
Zhu, J ;
Cao, W .
PHYSICAL REVIEW E, 2005, 72 (01)
[8]   Negative index of refraction in metallic metamaterial comprising split-ring resonators [J].
Dong, Zheng-Gao ;
Lei, Shuang-Ying ;
Xu, Ming-Xiang ;
Liu, Hui ;
Li, Tao ;
Wang, Fu-Ming ;
Zhu, Shi-Ning .
PHYSICAL REVIEW E, 2008, 77 (05)
[9]   Negative refraction with magnetic resonance in a metallic double-ring metamaterial [J].
Dong, Zheng-Gao ;
Xu, Ming-Xiang ;
Lei, Shuang-Ying ;
Liu, Hui ;
Li, Tao ;
Wang, Fu-Ming ;
Zhu, Shi-Ning .
APPLIED PHYSICS LETTERS, 2008, 92 (06)
[10]   Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials [J].
Enkrich, C ;
Pérez-Willard, R ;
Gerthsen, D ;
Zhou, JF ;
Koschny, T ;
Soukoulis, CM ;
Wegener, M ;
Linden, S .
ADVANCED MATERIALS, 2005, 17 (21) :2547-+