A wave equation approach to the numerical solution of the Navier-Stokes equations for incompressible viscous flow

被引:40
作者
Dean, EJ
Glowinski, R
机构
[1] UNIV PARIS 06,ANAL NUMER LAB,F-75252 PARIS 05,FRANCE
[2] UNIV HOUSTON,DEPT MATH,HOUSTON,TX 77204
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1997年 / 325卷 / 07期
关键词
D O I
10.1016/S0764-4442(97)80060-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this Note we describe a novel method for the solution of the Navier-Stokes equations for incompressible viscous fluids. This method, which can be viewed as an alternative to the methods of characteristics, takes advantage of a time discretization by operator splitting to decouple incompressibility-diffusion from advection. The incompressibility-diffusion steps can be treated by classical Stokes solvers. Concerning the advection steps, thanks to the incompressibility of the advecting field, we can replace the corresponding transport equations by second order in time wave equations, which are much easier to solve numerically despite the fact that they are associated to degenerate elliptic operators. Numerical experiments confirm the good computational properties of the new method.
引用
收藏
页码:783 / 791
页数:9
相关论文
共 13 条
[1]  
[Anonymous], LECT APPL MATH
[2]  
BEALE JT, 1981, MATH COMPUT, V37, P243, DOI 10.1090/S0025-5718-1981-0628693-0
[3]  
Brezzi F., 2012, MIXED HYBRID FINITE, V15
[4]  
CAHOUET J, 1988, INT J NUMER METH ENG, V8, P269
[5]  
CHIPPADA S, IN PRESS SIAM J NUM
[6]  
Ciarlet P.G., 1991, HDB NUMERICAL ANAL 1, P17, DOI DOI 10.1016/S1570-8659(05)80039-0
[7]  
Ciarlet PG., 1978, The Finite Element Method for Elliptic Problems
[8]  
Girault V., 1986, THEORY ALGORITHMS SP
[9]  
GLOWINSKI R, 1992, ANNU REV FLUID MECH, V24, P167, DOI 10.1146/annurev.fl.24.010192.001123
[10]  
GLOWINSKI R, 1992, J COMPUT PHYS, V102, P189