Watching the photosynthetic apparatus in native membranes

被引:138
作者
Scheuring, S
Sturgis, JN
Prima, V
Bernadac, A
Lévy, D
Rigaud, JL
机构
[1] CEA, UMR CNRS 168, Inst Curie, F-75231 Paris 05, France
[2] CEA, Lab Rech Correspondant, F-75231 Paris 05, France
[3] CNRS, UPR 9027, Inst Biol Struct & Microbiol, Lab Igenierie Syst Macromol, F-13402 Marseille 20, France
关键词
D O I
10.1073/pnas.0404350101
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Over the last 9 years, the structures of the various components of the bacterial photosynthetic apparatus or their homologues have been determined by x-ray crystallography to at least 4.8-Angstrom resolution. Despite this wealth of structural information on the individual proteins, there remains an urgent need to examine the architecture of the photosynthetic apparatus in intact photosynthetic membranes. Information on the arrangement of the different complexes in a native system will help us to understand the processes that ensure the remarkably high quantum efficiency of the system. In this work we report images obtained with an atomic force microscope of native photosynthetic membranes from the bacterium Rhodospirillum photometricum. Several proteins can be seen and identified at molecular resolution, allowing the analysis and modeling of the lateral organization of multiple components of the photosynthetic apparatus within a native membrane. Analysis of the distribution of the complexes shows that their arrangement is far from random, with significant clustering both of antenna complexes and core complexes. The functional significance of the observed distribution is discussed.
引用
收藏
页码:11293 / 11297
页数:5
相关论文
共 41 条
[1]   STRUCTURE AT 2.8-ANGSTROM RESOLUTION OF F1-ATPASE FROM BOVINE HEART-MITOCHONDRIA [J].
ABRAHAMS, JP ;
LESLIE, AGW ;
LUTTER, R ;
WALKER, JE .
NATURE, 1994, 370 (6491) :621-628
[2]   STRUCTURE OF THE REACTION CENTER FROM RHODOBACTER-SPHAEROIDES R-26 - THE PROTEIN SUBUNITS [J].
ALLEN, JP ;
FEHER, G ;
YEATES, TO ;
KOMIYA, H ;
REES, DC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (17) :6162-6166
[3]   Detection of molecular interactions at membrane surfaces through colloid phase transitions [J].
Baksh, MM ;
Jaros, M ;
Groves, JT .
NATURE, 2004, 427 (6970) :139-141
[4]   Oxyphotobacteria - Antenna ring around photosystem I [J].
Bibby, TS ;
Nield, J ;
Partensky, F ;
Barber, J .
NATURE, 2001, 413 (6856) :590-590
[5]   ATOMIC FORCE MICROSCOPE [J].
BINNIG, G ;
QUATE, CF ;
GERBER, C .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :930-933
[6]   Interactions between lipids and bacterial reaction centers determined by protein crystallography [J].
Camara-Artigas, A ;
Brune, D ;
Allen, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (17) :11055-11060
[7]   STRUCTURE OF THE PROTEIN SUBUNITS IN THE PHOTOSYNTHETIC REACTION CENTER OF RHODOPSEUDOMONAS-VIRIDIS AT 3A RESOLUTION [J].
DEISENHOFER, J ;
EPP, O ;
MIKI, K ;
HUBER, R ;
MICHEL, H .
NATURE, 1985, 318 (6047) :618-624
[8]   X-RAY STRUCTURE-ANALYSIS OF A MEMBRANE-PROTEIN COMPLEX - ELECTRON-DENSITY MAP AT 3A RESOLUTION AND A MODEL OF THE CHROMOPHORES OF THE PHOTOSYNTHETIC REACTION CENTER FROM RHODOPSEUDOMONAS-VIRIDIS [J].
DEISENHOFER, J ;
EPP, O ;
MIKI, K ;
HUBER, R ;
MICHEL, H .
JOURNAL OF MOLECULAR BIOLOGY, 1984, 180 (02) :385-398
[10]   Atomic force microscopy:: A forceful way with single molecules [J].
Engel, A ;
Gaub, HE ;
Müller, DJ .
CURRENT BIOLOGY, 1999, 9 (04) :R133-R136