Functional characterization of kainate receptors in the rat nucleus accumbens core region

被引:16
作者
Crowder, TL
Weiner, JL
机构
[1] Wake Forest Univ, Bowman Gray Sch Med, Dept Physiol & Pharmacol, Winston Salem, NC 27157 USA
[2] Wake Forest Univ, Bowman Gray Sch Med, Neurosci Program, Winston Salem, NC 27157 USA
关键词
D O I
10.1152/jn.2002.88.1.41
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The nucleus accumbens, a brain region involved in motivation, attention, and reward, receives substantial glutamatergic innervation from many limbic structures. This excitatory glutamatergic input plays an integral role in both normal and pathophysiological states. Despite the importance of glutamatergic transmission in the nucleus accumbens, the specific receptor subtypes that mediate glutamatergic signaling in this brain region have not been fully characterized. The current study sought to examine the possible role of the kainate subclass of glutamate receptor in the nucleus accumbens. Kainate receptors are relatively poorly understood members of the ionotropic glutamate receptor family and are highly expressed in the nucleus accumbens. Recent studies have highlighted a number of novel pre- and postsynaptic functions of kainate receptors in several other brain regions. Using the whole cell patch-clamp technique, we report the first demonstration of functional kainate receptors on neurons within the core region of the nucleus accumbens. In addition, we present evidence that activation of kainate receptors in this brain region inhibits excitatory synaptic transmission via a presynaptic mechanism.
引用
收藏
页码:41 / 48
页数:8
相关论文
共 49 条
[1]  
APICELLA P, 1991, EXP BRAIN RES, V85, P491
[2]   Kainate, a double agent that generates seizures: two decades of progress [J].
Ben-Ari, Y ;
Cossart, R .
TRENDS IN NEUROSCIENCES, 2000, 23 (11) :580-587
[3]  
Bischoff S, 1997, J COMP NEUROL, V379, P541, DOI 10.1002/(SICI)1096-9861(19970324)379:4<541::AID-CNE6>3.0.CO
[4]  
2-2
[5]   Kainate receptors are involved in synaptic plasticity [J].
Bortolotto, ZA ;
Clarke, VRJ ;
Delany, CM ;
Parry, MC ;
Smolders, I ;
Vignes, M ;
Ho, KH ;
Miu, P ;
Brinton, BT ;
Fantaske, R ;
Ogden, A ;
Gates, M ;
Ornstein, PL ;
Lodge, D ;
Bleakman, D ;
Collingridge, GL .
NATURE, 1999, 402 (6759) :297-301
[6]  
Bureau I, 1999, J NEUROSCI, V19, P653
[7]   Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons [J].
Castillo, PE ;
Malenka, RC ;
Nicoll, RA .
NATURE, 1997, 388 (6638) :182-186
[8]   Presynaptic kainate receptors in the monkey striatum [J].
Charara, A ;
Blankstein, E ;
Smith, Y .
NEUROSCIENCE, 1999, 91 (04) :1195-1200
[9]  
Chergui K, 2000, J NEUROSCI, V20, P2175
[10]   Regulation of glutamate release by presynaptic kainate receptors in the hippocampus [J].
Chittajallu, R ;
Vignes, M ;
Dev, KK ;
Barnes, JM ;
Collingridge, GL ;
Henley, JM .
NATURE, 1996, 379 (6560) :78-81