Impedance Matching and Emission Properties of Nanoantennas in an Optical Nanocircuit

被引:197
作者
Huang, Jer-Shing [1 ]
Feichtner, Thorsten [1 ]
Biagioni, Paolo [1 ]
Hecht, Bert [1 ]
机构
[1] Univ Wurzburg, Inst Phys, Rontgen Res Ctr Complex Mat Res RCCM, Dept Expt Phys 5,Nanoopt & Biophoton Grp, D-97074 Wurzburg, Germany
关键词
POWER WAVES; PLASMON; DISPERSION; GUIDE;
D O I
10.1021/nl803902t
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An experimentally realizable prototype optical nanocircuit consisting of a receiving and an emitting nanoantenna connected by a two-wire optical transmission line is studied using finite-difference time- and frequency-domain simulations. To optimize the coupling between optical nanocircuit elements we apply impedance matching concepts in analogy to radio frequency technology. We show that the degree of impedance matching, and in particular the impedance of the emitting nanoantenna, can be inferred from the experimentally accessible standing wave pattern on the transmission line. We demonstrate the possibility of matching the nanoantenna impedance to the transmission line by variations of the antenna length and width realizable by modern microfabrication techniques. The radiation efficiency of the emitting antenna also depends on its geometry but is independent of the degree of impedance matching. The case study presented here provides the basis for experimental realizations of general optical nanocircuits based on readily available gold nanostructures and a large variety of derived novel devices.
引用
收藏
页码:1897 / 1902
页数:6
相关论文
共 48 条
[1]   Adaptive subwavelength control of nano-optical fields [J].
Aeschlimann, Martin ;
Bauer, Michael ;
Bayer, Daniela ;
Brixner, Tobias ;
Garcia de Abajo, F. Javier ;
Pfeiffer, Walter ;
Rohmer, Martin ;
Spindler, Christian ;
Steeb, Felix .
NATURE, 2007, 446 (7133) :301-304
[2]   Input impedance, nanocircuit loading, and radiation tuning of optical nanoantennas [J].
Alu, Andrea ;
Engheta, Nader .
PHYSICAL REVIEW LETTERS, 2008, 101 (04)
[3]   Tuning the scattering response of optical nanoantennas with nanocircuit loads [J].
Alu, Andrea ;
Engheta, Nader .
NATURE PHOTONICS, 2008, 2 (05) :307-310
[4]   Hertzian plasmonic nanodimer as an efficient optical nanoantenna [J].
Alu, Andrea ;
Engheta, Nader .
PHYSICAL REVIEW B, 2008, 78 (19)
[5]   Enhancement and quenching of single-molecule fluorescence [J].
Anger, P ;
Bharadwaj, P ;
Novotny, L .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[6]   Spectral properties of plasmonic resonator antennas [J].
Barnard, Edward S. ;
White, Justin S. ;
Chandran, Anu ;
Brongersma, Mark L. .
OPTICS EXPRESS, 2008, 16 (21) :16529-16537
[7]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[8]   Waveguiding in surface plasmon polariton band gap structures [J].
Bozhevolnyi, SI ;
Erland, J ;
Leosson, K ;
Skovgaard, PMW ;
Hvam, JM .
PHYSICAL REVIEW LETTERS, 2001, 86 (14) :3008-3011
[9]   Channel plasmon subwavelength waveguide components including interferometers and ring resonators [J].
Bozhevolnyi, SI ;
Volkov, VS ;
Devaux, E ;
Laluet, JY ;
Ebbesen, TW .
NATURE, 2006, 440 (7083) :508-511
[10]   Channel plasmon-polariton guiding by subwavelength metal grooves [J].
Bozhevolnyi, SI ;
Volkov, VS ;
Devaux, E ;
Ebbesen, TW .
PHYSICAL REVIEW LETTERS, 2005, 95 (04)