Novel Rap1p-interacting factor, Rif2p, cooperates with Rif1p to regulate telomere length in Saccharomyces cerevisiae

被引:355
作者
Wotton, D
Shore, D
机构
[1] UNIV GENEVA,DEPT BIOL MOL,CH-1211 GENEVA 4,SWITZERLAND
[2] COLUMBIA UNIV COLL PHYS & SURG,DEPT MICROBIOL,NEW YORK,NY 10032
关键词
Rap1p; Rif1p; Rif2p; telomere length; transcriptional silencing; Saccharomyces cerevisiae;
D O I
10.1101/gad.11.6.748
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The Saccharomyces cerevisiae Rap1 protein binds with high affinity to sites within the poly(C(1-3)A) tracts at telomeres, where it plays a role in both telomere length regulation and the initiation of telomeric silencing. Rap1p initiates silencing at telomeres by interacting through its carboxy-terminal domain with Sir3p and Sir4p, both of which are required for repression. This same domain of Rap1p also negatively regulates telomere elongation, through an unknown mechanism. We have identified a new Rap1-interacting factor (Rif2p) that plays a role in telomere length regulation. Rif2p has considerable functional similarities with a Rap1p-interacting factor (Rif1p) identified previously. Mutations in RIF1 or RIF2 (unlike mutations in the silencing genes SIR3 and SIR4) result in moderate telomere elongation and improved telomeric silencing. However, deletion of both RIF1 and RIF2 in the same cell results in a dramatic increase in telomere length, similar to that seen with a carboxy-terminal truncation of Rap1p. In addition, overexpression of either RIF1 or RIF2 decreases telomere length, and co-overexpression of these proteins can reverse the telomere elongation effect of overexpression of the Rap1p carboxyl terminus. Finally, we show that Rif1p and Rif2p can interact with each other in vivo. These results suggest that telomere length regulation is mediated by a protein complex consisting of Rif1p and Rif2p, each of which has distinct regulatory functions. One role of Rap1p in telomere length regulation is to recruit these proteins to the telomeres.
引用
收藏
页码:748 / 760
页数:13
相关论文
共 58 条
[1]   MODIFIERS OF POSITION EFFECT ARE SHARED BETWEEN TELOMERIC AND SILENT MATING-TYPE LOCI IN SACCHAROMYCES-CEREVISIAE [J].
APARICIO, OM ;
BILLINGTON, BL ;
GOTTSCHLING, DE .
CELL, 1991, 66 (06) :1279-1287
[2]   TELOMERES - NO END IN SIGHT [J].
BLACKBURN, EH .
CELL, 1994, 77 (05) :621-623
[3]   CONNECTIONS BETWEEN TRANSCRIPTIONAL ACTIVATORS, SILENCERS, AND TELOMERES AS REVEALED BY FUNCTIONAL-ANALYSIS OF A YEAST DNA-BINDING PROTEIN [J].
BUCHMAN, AR ;
LUE, NF ;
KORNBERG, RD .
MOLECULAR AND CELLULAR BIOLOGY, 1988, 8 (12) :5086-5099
[4]   ACTION OF A RAP1 CARBOXY-TERMINAL SILENCING DOMAIN REVEALS AN UNDERLYING COMPETITION BETWEEN HMR AND TELOMERES IN YEAST [J].
BUCK, SW ;
SHORE, D .
GENES & DEVELOPMENT, 1995, 9 (03) :370-384
[5]  
CHI MH, 1995, MOL CELL BIOL, V16, P4281
[6]   THE 2-HYBRID SYSTEM - A METHOD TO IDENTIFY AND CLONE GENES FOR PROTEINS THAT INTERACT WITH A PROTEIN OF INTEREST [J].
CHIEN, CT ;
BARTEL, PL ;
STERNGLANZ, R ;
FIELDS, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (21) :9578-9582
[7]   THE CARBOXY TERMINI OF SIR4 AND RAP1 AFFECT SIR3 LOCALIZATION - EVIDENCE FOR A MULTICOMPONENT COMPLEX REQUIRED FOR YEAST TELOMERIC SILENCING [J].
COCKELL, M ;
PALLADINO, F ;
LAROCHE, T ;
KYRION, G ;
LIU, C ;
LUSTIG, AJ ;
GASSER, SM .
JOURNAL OF CELL BIOLOGY, 1995, 129 (04) :909-924
[8]   TELOMERASE IN YEAST [J].
COHN, M ;
BLACKBURN, EH .
SCIENCE, 1995, 269 (5222) :396-400
[9]   RAP1 PROTEIN INTERACTS WITH YEAST TELOMERES INVIVO - OVERPRODUCTION ALTERS TELOMERE STRUCTURE AND DECREASES CHROMOSOME STABILITY [J].
CONRAD, MN ;
WRIGHT, JH ;
WOLF, AJ ;
ZAKIAN, VA .
CELL, 1990, 63 (04) :739-750
[10]  
Drazinic CM, 1996, MOL CELL BIOL, V16, P3187