Wavelet sparse approximate inverse preconditioners

被引:43
作者
Chan, TF
Tang, WP
Wan, WL
机构
[1] UNIV CALIF LOS ANGELES,DEPT MATH,LOS ANGELES,CA 90095
[2] UNIV WATERLOO,DEPT COMP SCI,WATERLOO,ON N2L 3G1,CANADA
来源
BIT | 1997年 / 37卷 / 03期
基金
加拿大自然科学与工程研究理事会;
关键词
preconditioning; approximate inverses; sparse matrices; wavelet;
D O I
10.1007/BF02510244
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We show how to use wavelet compression ideas to improve the performance of approximate inverse preconditioners. Our main idea is to first transform the inverse of the coefficient matrix into a wavelet basis, before applying standard approximate inverse techniques. In this process, smoothness in the entries of A(-1) are converted into small wavelet coefficients, thus allowing a more efficient approximate inverse approximation. We shall justify theoretically and numerically that our approach is effective for matrices with smooth inverses.
引用
收藏
页码:644 / 660
页数:17
相关论文
共 32 条
[1]  
AXELSSON O, 1994, ITERATIVE SOLUTION
[2]  
Benson MW., 1982, Utilitas Math, V22, P127
[3]  
Benson MW., 1973, Iterative solution of large scale linear systems
[4]   A sparse approximate inverse preconditioner for the conjugate gradient method [J].
Benzi, M ;
Meyer, CD ;
Tuma, M .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (05) :1135-1149
[5]  
BENZI M, 1997, IN PRESS SIAM J SCI
[6]   FAST WAVELET TRANSFORMS AND NUMERICAL ALGORITHMS .1. [J].
BEYLKIN, G ;
COIFMAN, R ;
ROKHLIN, V .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (02) :141-183
[7]  
BOOR CD, 1980, SIAM J NUMER ANAL, V17, P894
[8]   Diagonal preconditioners for the EFIE using a wavelet basis [J].
Canning, FX ;
Scholl, JF .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1996, 44 (09) :1239-1246
[9]  
CHOW E, 1995, IN PRESS SIAM J SCI
[10]  
CHOW E, 1994, IN PRESS SIAM J SCI