The Xedni calculus and the elliptic curve discrete logarithm problem

被引:28
作者
Silverman, JH [1 ]
机构
[1] Brown Univ, Dept Math, Providence, RI 02912 USA
关键词
elliptic curve; discrete logarithm; Xedni calculus;
D O I
10.1023/A:1008319518035
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let E/F-p be an elliptic curve defined over a finite field, and let S,T is an element of E(F-p) be two points on E. The Elliptic Curve Discrete Logarithm Problem (ECDLP) asks that an integer m be found so that S = mT in E(F-p). In this note we give a new algorithm, termed the Xedni Calculus, which might be used to solve the ECDLP. As remarked by Neal Koblitz, the Xedni method is also applicable to the classical discrete logarithm problem for F-p* and to the integer factorization problem.
引用
收藏
页码:5 / 40
页数:36
相关论文
共 24 条
[1]  
[Anonymous], 1993, COURSE COMPUTATIONAL
[2]  
BIRCH BJ, 1975, LECT NOTES MATH, V476, P2
[3]   ADDENDUM TO A PAPER OF HARADA AND LANG [J].
CONNELL, I .
JOURNAL OF ALGEBRA, 1992, 145 (02) :463-467
[4]  
Cremona J. E., 1997, Algorithms for modular elliptic curves, V2nd
[5]   EXCEPTIONAL SET IN THE SZPIROS CONJECTURE [J].
FOUVRY, E ;
NAIR, M ;
TENENBAUM, G .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1992, 120 (04) :485-506
[6]   Extended GCD and Hermite normal form algorithms via lattice basis reduction [J].
Havas, G ;
Majewski, BS ;
Matthews, KR .
EXPERIMENTAL MATHEMATICS, 1998, 7 (02) :125-136
[7]   THE CANONICAL HEIGHT AND INTEGRAL POINTS ON ELLIPTIC-CURVES [J].
HINDRY, M ;
SILVERMAN, JH .
INVENTIONES MATHEMATICAE, 1988, 93 (02) :419-450
[8]   Analysis of the Xedni calculus attack [J].
Jacobson, MJ ;
Koblitz, N ;
Silverman, JH ;
Stein, A ;
Teske, E .
DESIGNS CODES AND CRYPTOGRAPHY, 2000, 20 (01) :41-64
[9]  
KOBLITZ N, 1987, MATH COMPUT, V48, P203, DOI 10.1090/S0025-5718-1987-0866109-5
[10]  
KOBLITZ N, 1998, COMMUNICATION SEP