Energy dissipation statistics in a shell model of turbulence

被引:4
作者
Boffetta, G
Celani, A
Roagna, D
机构
[1] Univ Turin, Dipartimento Fis Gen, I-10125 Turin, Italy
[2] Unita Torino Univ, INFM, I-10125 Turin, Italy
[3] Observ Cote Azur, F-06304 Nice, France
来源
PHYSICAL REVIEW E | 2000年 / 61卷 / 03期
关键词
D O I
10.1103/PhysRevE.61.3234
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The Reynolds number dependence of the statistics of energy dissipation is investigated in a shell model of fully developed turbulence. The results are in agreement with a model which accounts for fluctuations of the dissipative scale with the intensity of energy dissipation. It is shown that the assumption of a fixed dissipative scale leads to a different scaling with Reynolds which is not compatible with numerical results.
引用
收藏
页码:3234 / 3236
页数:3
相关论文
共 14 条
[1]  
[Anonymous], TURBULENCE PREDICTAB
[2]   HIGH-ORDER VELOCITY STRUCTURE FUNCTIONS IN TURBULENT SHEAR FLOWS [J].
ANSELMET, F ;
GAGNE, Y ;
HOPFINGER, EJ ;
ANTONIA, RA .
JOURNAL OF FLUID MECHANICS, 1984, 140 (MAR) :63-89
[3]  
Bohr T., 1998, DYNAMICAL SYSTEMS AP
[4]   Bridge relations in Navier-Stokes turbulence [J].
Celani, A ;
Biskamp, D .
EUROPHYSICS LETTERS, 1999, 46 (03) :332-338
[5]   EFFECT OF DISSIPATION FLUCTUATIONS ON ANOMALOUS VELOCITY SCALING IN TURBULENCE [J].
EGGERS, J ;
GROSSMANN, S .
PHYSICAL REVIEW A, 1992, 45 (04) :2360-2369
[6]   A PREDICTION OF THE MULTIFRACTAL MODEL - THE INTERMEDIATE DISSIPATION RANGE [J].
FRISCH, U ;
VERGASSOLA, M .
EUROPHYSICS LETTERS, 1991, 14 (05) :439-444
[7]  
Frisch U., 1999, TURBULENCE
[8]   Improved shell model of turbulence [J].
L'vov, VS ;
Podivilov, E ;
Pomyalov, A ;
Procaccia, I ;
Vandembroucq, D .
PHYSICAL REVIEW E, 1998, 58 (02) :1811-1822
[9]   SIMPLE MULTIFRACTAL CASCADE MODEL FOR FULLY-DEVELOPED TURBULENCE [J].
MENEVEAU, C ;
SREENIVASAN, KR .
PHYSICAL REVIEW LETTERS, 1987, 59 (13) :1424-1427
[10]  
Monin A. S., 1971, Statistical fluid mechanics: mechanics of turbulence