Finite size effects and the order of a phase transition in fragmenting nuclear systems

被引:11
作者
Carmona, JM
Michel, N
Richert, J
Wagner, P
机构
[1] Dipartimento Fis, I-56127 Pisa, Italy
[2] Univ Strasbourg, Phys Theor Lab, F-67084 Strasbourg, France
[3] Inst Rech Subatom, F-67037 Strasbourg 2, France
来源
PHYSICAL REVIEW C | 2000年 / 61卷 / 03期
关键词
D O I
10.1103/PhysRevC.61.037304
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We discuss the implications of finite size effects on the determination of the order of a phase transition which may occur in infinite systems. We introduce a specific model to which we apply different tests. They are aimed to characterize the smoothed transition observed in a finite system. We show that the microcanonical ensemble may be a useful framework for the determination of the nature of such transitions.
引用
收藏
页数:4
相关论文
共 23 条
[1]  
BORG J, NUCLTH9809079
[2]   AN INVESTIGATION OF FINITE SIZE SCALING [J].
BREZIN, E .
JOURNAL DE PHYSIQUE, 1982, 43 (01) :15-22
[3]   Clustering in supercritical nuclear matter: A lattice-gas approach [J].
Campi, X ;
Krivine, H .
NUCLEAR PHYSICS A, 1997, 620 (01) :46-54
[4]   A model for nuclear matter fragmentation: phase diagram and cluster distributions [J].
Carmona, JM ;
Richert, J ;
Tarancon, A .
NUCLEAR PHYSICS A, 1998, 643 (02) :115-134
[5]   LIQUID-GAS PHASE INSTABILITIES IN NUCLEAR SYSTEMS [J].
CURTIN, MW ;
TOKI, H ;
SCOTT, DK .
PHYSICS LETTERS B, 1983, 123 (05) :289-292
[6]  
DAGOSTINO M, NBUCLEX9906004
[7]   THEORY OF CONDENSATION AND CRITICAL POINT [J].
FISHER, ME .
PHYSICS-NEW YORK, 1967, 3 (05) :255-&
[8]   SCALING THEORY FOR FINITE-SIZE EFFECTS IN CRITICAL REGION [J].
FISHER, ME ;
BARBER, MN .
PHYSICAL REVIEW LETTERS, 1972, 28 (23) :1516-&
[9]  
Gross DHE, 1997, PHYS REP, V279, P120
[10]   Critical behavior in the coexistence region of finite systems [J].
Gulminelli, F ;
Chomaz, P .
PHYSICAL REVIEW LETTERS, 1999, 82 (07) :1402-1405