Anatase phase mesoporous TiO2 with 141/amd space group was synthesized via the urea assisted hydrothermal method. The existence of mono phasic TiO2 sub-microspheres of uniform particle size (ca. 400 nm) encompassing an average crystallite size of 14 rum was demonstrated using the XRD, FE-SEM and TEM analysis. Surface area of ca. 116.49 m(2)/g along with a pore size of 7 nm was calculated using the BET and adsorption isotherm measurements which authenticated the mesoporous nature of the synthesized material. Suitable calcination temperature for the better electrochemical property was established via the optimization process. Accordingly, the mesoporous TiO2 calcined at 400 degrees C displayed improved cycleability with excellent rate capability ever reported, even at 20 C-rate of discharge. The reason for the superior rate capability is corroborated to the highly mesoporous nature of the TiO2 sub-microspheres that has imparted desirable surface area apposite for enhanced ionic and electronic diffusion. (C) 2009 Elsevier B.V. All rights reserved.