Mo2C Nanoparticles Decorated Graphitic Carbon Sheets: Biopolymer-Derived Solid-State Synthesis and Application as an Efficient Electrocatalyst for Hydrogen Generation

被引:336
作者
Cui, Wei [1 ,2 ]
Cheng, Ningyan [1 ,2 ]
Liu, Qian [1 ]
Ge, Chenjiao [1 ]
Asiri, Abdullah M. [3 ,4 ]
Sun, Xuping [1 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Electroanalyt Chem, Changchun 130022, Jilin, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China
[3] King Abdulaziz Univ, Dept Chem, Fac Sci, Jeddah 21589, Saudi Arabia
[4] King Abdulaziz Univ, Ctr Excellence Adv Mat Res, Jeddah 21589, Saudi Arabia
来源
ACS CATALYSIS | 2014年 / 4卷 / 08期
基金
中国国家自然科学基金;
关键词
molybdenum carbide nanoparticles; graphitic carbon sheets; biopolymer; electrocatalysts; hydrogen generation; TRANSITION-METAL CARBIDES; ACTIVE EDGE SITES; MOLYBDENUM SULFIDE; EVOLUTION REACTION; CATALYTIC-ACTIVITY; NANOSHEETS; WATER; H-2; GRAPHENE; OXIDE;
D O I
10.1021/cs5005294
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The present work reports on the preparation of Mo2C nanoparticles decorated graphitic carbon sheets (Mo2C/GCSs) via a biopolymer-derived solid-state reaction between (NH4)(6)Mo7O24 center dot 4H(2)O and sodium alginate at 900 degrees C under Ar. As a novel hydrogen evolution reaction electrocatalytst, the Mo2C/GCSs hybrids exhibit high activity in acidic solutions with an onset potential of 120 mV, a Tafel slope of 62.6 mV dec(-1), and an exchange current density of 12.5 x 10(-3) mA cm(-2). Moreover, such Mo2C/GCSs catalysts also show excellent durability during long-term 3000 cycles.
引用
收藏
页码:2658 / 2661
页数:4
相关论文
共 37 条
[1]  
[Anonymous], 2013, NAT CHEM, V5, P255
[2]   Preparation of Graphene Quantum Dots from Pyrolyzed Alginate [J].
Atienzar, Pedro ;
Primo, Ana ;
Lavorato, Cristina ;
Molinari, Raffaele ;
Garcia, Hermenegildo .
LANGMUIR, 2013, 29 (20) :6141-6146
[3]   Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production [J].
Chen, W. -F. ;
Wang, C. -H. ;
Sasaki, K. ;
Marinkovic, N. ;
Xu, W. ;
Muckerman, J. T. ;
Zhu, Y. ;
Adzic, R. R. .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (03) :943-951
[4]   Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts [J].
Chen, Wei-Fu ;
Muckerman, James T. ;
Fujita, Etsuko .
CHEMICAL COMMUNICATIONS, 2013, 49 (79) :8896-8909
[5]   Biomass-derived electrocatalytic composites for hydrogen evolution [J].
Chen, Wei-Fu ;
Iyer, Shilpa ;
Iyer, Shweta ;
Sasaki, Kotaro ;
Wang, Chiu-Hui ;
Zhu, Yimei ;
Muckerman, James T. ;
Fujita, Etsuko .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (06) :1818-1826
[6]   Hydrogen-Evolution Catalysts Based on Non-Noble Metal Nickel-Molybdenum Nitride Nanosheets [J].
Chen, Wei-Fu ;
Sasaki, Kotaro ;
Ma, Chao ;
Frenkel, Anatoly I. ;
Marinkovic, Nebojsa ;
Muckerman, James T. ;
Zhu, Yimei ;
Adzic, Radoslav R. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (25) :6131-6135
[7]   Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H [J].
Conway, BE ;
Tilak, BV .
ELECTROCHIMICA ACTA, 2002, 47 (22-23) :3571-3594
[8]   A New Class of Electrocatalysts for Hydrogen Production from Water Electrolysis: Metal Monolayers Supported on Low-Cost Transition Metal Carbides [J].
Esposito, Daniel V. ;
Hunt, Sean T. ;
Kimmel, Yannick C. ;
Chen, Jingguang G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (06) :3025-3033
[9]   Computational high-throughput screening of electrocatalytic materials for hydrogen evolution [J].
Greeley, Jeff ;
Jaramillo, Thomas F. ;
Bonde, Jacob ;
Chorkendorff, I. B. ;
Norskov, Jens K. .
NATURE MATERIALS, 2006, 5 (11) :909-913
[10]   Reversible H2 Addition across a Nickel-Borane Unit as a Promising Strategy for Catalysis [J].
Harman, W. Hill ;
Peters, Jonas C. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (11) :5080-5082