Simple shear flow of suspensions of elastic capsules

被引:59
作者
Breyiannis, G [1 ]
Pozrikidis, C [1 ]
机构
[1] Univ Calif San Diego, La Jolla, CA 92093 USA
关键词
D O I
10.1007/s001620050003
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The simple shear flow of homogeneous suspensions of two-dimensional capsules enclosed by elastic membranes is studied in the limit of vanishing Reynolds number, in the special case where the viscosity of the fluid enclosed by the capsules is equal to the viscosity of the ambient fluid. The deformation of capsules with circular, elliptical, and biconcave unstressed shapes, and the rheological and statistical properties of their infinitely dilute and moderately dense suspensions are investigated by dynamical simulation using the method of interfacial dynamics for Stokes flow. In a preliminary investigation, the behavior of solitary capsules suspended in an infinite fluid is studied as a function of the dimensionless membrane elasticity number expressing the capsule deformability or the strength of the shear flow. It is found that a critical elasticity number above which a capsule exhibits continued elongation does not exist, and an equilibrium configuration is reached no matter how large the shear rate, in agreement with previous results for three-dimensional flow. A correspondence is established between the elasticity numbers for two- and three-dimensional flow at which the capsules undergo the same degree of deformation. Simulations of pairwise capsule interceptions reveal behavior similar to that exhibited by liquid drops with uniform surface tension. Because of strong hydrodynamic interactions in two-dimensional Stokes flow, the concept of hydrodynamic diffusivity in the limit of infinite dilution is ill-defined in the absence of fluid inertia. Dynamical simulations of doubly periodic monodisperse suspensions with up to 50 capsules distributed in each periodic cell at areal fractions of 0.25 and 0.40 provide information on the effective rheological properties of the suspension and on the nature of the statistical propel-ties of the particle motion. The character of the flow is found to be intermediate between that of liquid drops and rigid particles, and this is attributed to the membrane deformability and to the ability of the interfaces to perform tank-treading motion. The results are compared with rheological measurements of blood flow with good agreement.
引用
收藏
页码:327 / 347
页数:21
相关论文
共 43 条
[1]  
[Anonymous], 1997, Introduction to Theoretical and Computational Fluid Dynamics
[2]   THE TIME-DEPENDENT DEFORMATION OF A CAPSULE FREELY SUSPENDED IN A LINEAR SHEAR-FLOW [J].
BARTHESBIESEL, D ;
RALLISON, JM .
JOURNAL OF FLUID MECHANICS, 1981, 113 (DEC) :251-267
[3]   ROLE OF MEMBRANE VISCOSITY IN THE ORIENTATION AND DEFORMATION OF A SPHERICAL CAPSULE SUSPENDED IN SHEAR-FLOW [J].
BARTHESBIESEL, D ;
SGAIER, H .
JOURNAL OF FLUID MECHANICS, 1985, 160 (NOV) :119-135
[4]   MOTION OF A SPHERICAL MICROCAPSULE FREELY SUSPENDED IN A LINEAR SHEAR-FLOW [J].
BARTHESBIESEL, D .
JOURNAL OF FLUID MECHANICS, 1980, 100 (OCT) :831-853
[5]   STRESS SYSTEM IN A SUSPENSION OF FORCE-FREE PARTICLES [J].
BATCHELOR, GK .
JOURNAL OF FLUID MECHANICS, 1970, 41 :545-+
[6]  
BELZONS M, 1981, CR ACAD SCI II, V292, P939
[7]   Simulations of the erythrocyte cytoskeleton at large deformation. I. Microscopic models [J].
Boey, SK ;
Boal, DH ;
Discher, DE .
BIOPHYSICAL JOURNAL, 1998, 75 (03) :1573-1583
[8]   THE RHEOLOGY OF CONCENTRATED SUSPENSIONS OF SPHERES IN SIMPLE SHEAR-FLOW BY NUMERICAL-SIMULATION [J].
BRADY, JF ;
BOSSIS, G .
JOURNAL OF FLUID MECHANICS, 1985, 155 (JUN) :105-129
[9]   Significance of the dispersed-phase viscosity on the simple shear flow of suspensions of two-dimensional liquid drops [J].
Charles, R ;
Pozrikidis, C .
JOURNAL OF FLUID MECHANICS, 1998, 365 :205-234
[10]   The dynamics of an elastic membrane using the impulse method [J].
Cortez, R ;
Varela, DA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 138 (01) :224-247