Real-time polymerase chain reaction for one-hour on-site diagnosis of Pierce's disease of grape in early season asymptomatic vines

被引:110
作者
Schaad, NW [1 ]
Opgenorth, D
Gaush, P
机构
[1] USDA ARS, Foreign Dis Weed Sci Res Unit, Ft Detrick, MD 21702 USA
[2] Calif Dept Food & Agr, Sacramento, CA 95832 USA
关键词
biosensor; detection; enzyme-linked immunosorbent assay; xylem tissues;
D O I
10.1094/PHYTO.2002.92.7.721
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Molecular-based techniques, such as polymerase chain reaction (PCR), can reduce the time needed for diagnosis of plant diseases when compared with classical isolation and pathogenicity tests. However, molecular techniques still require 2 to 3 days to complete. To the best of our knowledge, we describe for the first time a real-time PCR technique using a portable Smart Cycler for one-hour on-site diagnosis of an asymptomatic plant disease. Pierce's disease (PD) of grape, caused by the fastidious bacterium Xylella fastidiosa, causes serious losses in grapes in California and the southeastern United States. The disease has been difficult to diagnose because typical leaf scorching symptoms do not appear until late (June and after) in the season and the organism is very difficult to isolate early in the season. Sap and samples of macerated chips of secondary xylem from trunks of vines were used in a direct real-time PCR without extraction of DNA. Using two different sets of primers and probe, we diagnosed PD in 7 of 27 vines (26%) from four of six vineyards sampled 10 to 12 days after bud break in Kern, Tulare, and Napa counties of California. The diagnosis was confirmed by isolation of Xylella fastidiosa from two of the original PCR positive samples and later from symptomatic leaf petioles of four out of four vines from one vineyard that were originally PCR positive.
引用
收藏
页码:721 / 728
页数:8
相关论文
共 37 条
[1]   Multiplication and movement of a citrus strain of Xylella fastidiosa within sweet orange [J].
Almeida, RPP ;
Pereira, EF ;
Purcell, AH ;
Lopes, JRS .
PLANT DISEASE, 2001, 85 (04) :382-386
[2]   Specific detection of Xylella fastidiosa Pierce's disease strains [J].
Banks, D ;
Albibi, R ;
Chen, JC ;
Lamikanra, O ;
Jarret, RL ;
Smith, BJ .
CURRENT MICROBIOLOGY, 1999, 39 (02) :85-88
[3]   Infectious disease - PCR detection of bacteria in seven minutes [J].
Belgrader, P ;
Benett, W ;
Hadley, D ;
Richards, J ;
Stratton, P ;
Mariella, R ;
Milanovich, F .
SCIENCE, 1999, 284 (5413) :449-450
[4]   XYLELLA-FASTIDIOSA - CULTIVATION IN CHEMICALLY DEFINED MEDIUM [J].
CHANG, CJ ;
DONALDSON, RC .
PHYTOPATHOLOGY, 1993, 83 (02) :192-194
[5]   RANDOMLY AMPLIFIED POLYMORPHIC DNA ANALYSIS OF XYLELLA-FASTIDIOSA PIERCES-DISEASE AND OAK LEAF SCORCH PATHOTYPES [J].
CHEN, J ;
LAMIKANRA, O ;
CHANG, CJ ;
HOPKINS, DL .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1995, 61 (05) :1688-1690
[6]   Use of 16S rDNA sequences as signature characters to identify Xylella fastidiosa [J].
Chen, JC ;
Banks, D ;
Jarret, RL ;
Chang, CJ ;
Smith, BJ .
CURRENT MICROBIOLOGY, 2000, 40 (01) :29-33
[7]  
Chen Y, 2000, J MATER SCI TECHNOL, V16, P23
[8]  
COLETTAFILHO HD, 2000, APPL ENVIRON MICROB, V67, P4091
[9]   Strains of Xylella fastidiosa rapidly distinguished by arbitrarily primed-PCR [J].
da Costa, PI ;
Franco, CF ;
Miranda, VS ;
Teixeira, DC ;
Hartung, JS .
CURRENT MICROBIOLOGY, 2000, 40 (04) :279-282
[10]   AXENIC CULTURE OF THE BACTERIA ASSOCIATED WITH PHONY DISEASE OF PEACH AND PLUM LEAF SCALD [J].
DAVIS, MJ ;
FRENCH, WJ ;
SCHAAD, NW .
CURRENT MICROBIOLOGY, 1981, 6 (05) :309-314