Statistics and UV-IR mixing with twisted Poincare invariance

被引:105
作者
Balachandran, A. P. [1 ]
Govindarajan, T. R.
Mangano, G.
Pinzul, A.
Qureshi, B. A.
Vaidya, S.
机构
[1] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA
[2] Inst Math Sci, Madras 600113, Tamil Nadu, India
[3] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy
[4] Univ Naples Federico II, Dipartimento Sci Fisiche, I-80126 Naples, Italy
[5] Indian Inst Sci, Ctr High Energy Phys, Bangalore 560012, Karnataka, India
来源
PHYSICAL REVIEW D | 2007年 / 75卷 / 04期
关键词
D O I
10.1103/PhysRevD.75.045009
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We elaborate on the role of quantum statistics in twisted Poincare invariant theories. It is shown that, in order to have twisted Poincare group as the symmetry of a quantum theory, statistics must be twisted. It is also confirmed that the removal of UV-IR mixing (in the absence of gauge fields) in such theories is a natural consequence.
引用
收藏
页数:7
相关论文
共 10 条
[1]   A gravity theory on noncommultative spaces [J].
Aschieri, P ;
Blohmann, C ;
Dimitrijevi, M ;
Meyer, F ;
Schupp, P ;
Wess, J .
CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (17) :3511-3532
[2]   Spin and statistics on the Groenewold-Moyal plane: Pauli-forbidden levels and transitions [J].
Balachandran, A. P. ;
Mangano, G. ;
Pinzul, A. ;
Vaidya, S. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2006, 21 (15) :3111-3126
[3]   UV-IR mixing in non-commutative plane [J].
Balachandran, AP ;
Pinzul, A ;
Qureshi, BA .
PHYSICS LETTERS B, 2006, 634 (04) :434-436
[4]  
BALACHANDRAN AP, HEPTH0608138
[5]  
BALACHANDRAN AP, HEPTH0608081, P84027
[6]   On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT [J].
Chaichian, M ;
Kulish, PP ;
Nishijima, K ;
Tureanu, A .
PHYSICS LETTERS B, 2004, 604 (1-2) :98-102
[7]  
Majid S., 1995, FDN QUANTUM GROUP TH
[9]   Twist and spin-statistics relation in noncommutative quantum field theory [J].
Tureanu, Anca .
PHYSICS LETTERS B, 2006, 638 (2-3) :296-301
[10]   Remarks on twisted noncommutative quantum field theory [J].
Zahn, Jochen .
PHYSICAL REVIEW D, 2006, 73 (10)