In common with other alpha-herpesviruses, the genome of equine herpesvirus type-1 (EHV-1) comprises covalently linked long and short unique sequences of DNA, each flanked by inverted repeats. Equimolar amounts of two genomic isomers, generated by free inversion of the short segment, relative to the long segment, are packaged into EHV-1 virions. In contrast with herpes simplex virus (HSV), inversion of genomic long segments has not been described. In the current work, the structures of high molecular weight intermediates of EHV-1 DNA replication were studied by field inversion gel electrophoresis. It is shown that adjacent long segments of the viral genome are frequently inverted in concatemeric intermediates of EHV-1 DNA replication. Further, like HSV concatemers, high molecular weight intermediates of EHV-1 replication are flanked exclusively by the long segment of the viral genome. Hence, despite the fact that only two, rather than four, isomers of EHV-1 DNA are packaged into virions, the intermediates of EHV-1 DNA replication closely resemble those of herpes simplex virus type 1 in structure. These data have implications relating to the mechanisms involved in packaging of alpha-herpesvirus DNA. (C) 1997 Academic Press.