Neuroligin-2 Deletion Selectively Decreases Inhibitory Synaptic Transmission Originating from Fast-Spiking but Not from Somatostatin-Positive Interneurons

被引:130
作者
Gibson, Jay R. [1 ]
Huber, Kimberly M. [1 ]
Suedhof, Thomas C. [1 ,2 ,3 ,4 ]
机构
[1] Univ Texas SW Med Ctr Dallas, Dept Neurosci, Dallas, TX 75390 USA
[2] Univ Texas SW Med Ctr Dallas, Howard Hughes Med Inst, Dallas, TX 75390 USA
[3] Stanford Univ, Sch Med, Dept Mol & Cellular Physiol, Palo Alto, CA 94304 USA
[4] Stanford Univ, Sch Med, Howard Hughes Med Inst, Palo Alto, CA 94304 USA
基金
美国国家卫生研究院;
关键词
SHORT-TERM DEPRESSION; PRIMARY VISUAL-CORTEX; NEUROTRANSMITTER RELEASE; GABAERGIC INNERVATION; GLUTAMATE RECEPTORS; ALPHA-NEUREXINS; BETA-NEUREXINS; BARREL CORTEX; LATE STEP; SYNAPSES;
D O I
10.1523/JNEUROSCI.2457-09.2009
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Neuroligins are cell adhesion molecules involved in synapse formation and/or function. Neurons express four neuroligins (NL1-NL4), of which NL1 is specific to excitatory and NL2 to inhibitory synapses. Excitatory and inhibitory synapses include numerous subtypes. However, it is unknown whether NL1 performs similar functions in all excitatory and NL2 in all inhibitory synapses, or whether they regulate the formation and/or function of specific subsets of synapses. To address this central question, we performed paired recordings in primary somatosensory cortex of mice lacking NL1 or NL2. Using this system, we examined neocortical microcircuits formed by reciprocal synapses between excitatory neurons and two subtypes of inhibitory interneurons, namely, fast-spiking and somatostatin-positive interneurons. We find that the NL1 deletion had little effect on inhibitory synapses, whereas the NL2 deletion decreased (40-50%) the unitary (cell-to-cell) IPSC amplitude evoked from single fast-spiking interneurons. Strikingly, the NL2 deletion had no effect on IPSC amplitude evoked from single somatostatin-positive inhibitory interneurons. Moreover, the frequency of unitary synaptic connections between individual fast-spiking and somatostatin-positive interneurons and excitatory neurons was unchanged. The decrease in unitary IPSC amplitude originating from fast-spiking interneurons in NL2-deficient mice was due to a multiplicative and uniform downscaling of the amplitude distribution, which in turn was mediated by a decrease in both synaptic quantal amplitude and quantal content, the latter inferred from an increase in the coefficient of variation. Thus, NL2 is not necessary for establishing unitary inhibitory synaptic connections but is selectively required for "scaling up" unitary connections originating from a subset of interneurons.
引用
收藏
页码:13883 / 13897
页数:15
相关论文
共 73 条
[1]   THALAMOCORTICAL RESPONSES OF MOUSE SOMATOSENSORY (BARREL) CORTEX INVITRO [J].
AGMON, A ;
CONNORS, BW .
NEUROSCIENCE, 1991, 41 (2-3) :365-379
[2]   Differential activity-dependent, homeostatic plasticity of two neocortical inhibitory circuits [J].
Bartley, Aundrea F. ;
Huang, Z. Josh ;
Huber, Kimberly M. ;
Gibson, Jay R. .
JOURNAL OF NEUROPHYSIOLOGY, 2008, 100 (04) :1983-1994
[3]   Two dynamically distinct inhibitory networks in layer 4 of the neocortex [J].
Beierlein, M ;
Gibson, JR ;
Connors, BW .
JOURNAL OF NEUROPHYSIOLOGY, 2003, 90 (05) :2987-3000
[4]   Ca2+ buffer saturation underlies paired pulse facilitation in calbindin-D28k-containing terminals [J].
Blatow, M ;
Caputi, A ;
Burnashev, N ;
Monyer, H ;
Rozov, A .
NEURON, 2003, 38 (01) :79-88
[5]   Unusually rapid evolution of Neuroligin-4 in mice [J].
Bolliger, Marc F. ;
Pei, Jimin ;
Maxeiner, Stephan ;
Boucard, Antony A. ;
Grishin, Nick V. ;
Sudhof, Thomas C. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (17) :6421-6426
[6]   A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to α- and β-neurexins [J].
Boucard, AA ;
Chubykin, AA ;
Comoletti, D ;
Taylor, P ;
Südhof, TC .
NEURON, 2005, 48 (02) :229-236
[7]   Multiple roles for the active zone protein RIM1α in late stages of neurotransmitter release [J].
Calakos, N ;
Schoch, S ;
Südhof, TC ;
Malenka, RC .
NEURON, 2004, 42 (06) :889-896
[8]  
Cauli B, 1997, J NEUROSCI, V17, P3894
[9]   Experience and activity-dependent maturation of perisomatic GABAergic innervation in primary visual cortex during a postnatal critical period [J].
Chattopadhyaya, B ;
Di Cristo, G ;
Higashiyama, H ;
Knott, GW ;
Kuhlman, SJ ;
Welker, E ;
Huang, ZJ .
JOURNAL OF NEUROSCIENCE, 2004, 24 (43) :9598-9611
[10]   Control of excitatory and inhibitory synapse formation by neuroligins [J].
Chih, B ;
Engelman, H ;
Scheiffele, P .
SCIENCE, 2005, 307 (5713) :1324-1328