Searching for evidence of positive selection in the human genome using patterns of microsatellite variability

被引:74
作者
Payseur, BA [1 ]
Cutter, AD [1 ]
Nachman, MW [1 ]
机构
[1] Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ 85721 USA
关键词
positive selection; directional selection; balancing selection; genetic hitchhiking; microsatellites; human genome;
D O I
10.1093/oxfordjournals.molbev.a004172
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Both natural selection and nonequilibrium population-level processes can lead to a skew in the frequency distribution of polymorphisms. Population-level processes are expected to affect all loci in a roughly equal fashion, whereas selection will affect only some regions of the genome. We conducted a sliding-window analysis of the frequency distribution of microsatellite polymorphisms across the human genome to identify regions that may be under positive selection. The analysis was based on a published data set of 5,257 mapped microsatellites in individuals of European ancestry. Observed and expected numbers of alleles were compared under a stepwise mutation model (SMM) using analytical formulae. Observed and expected heterozygosities were compared under a SMM using coalescent simulations. The two sets of analyses gave similar results. Approximately one-fourth of all loci showed a significant deficit of heterozygosity, consistent with a recent population expansion. Forty-three windows were identified with extreme skews in the frequency distribution of polymorphisms (in the direction of a deficit of heterozygosity, given the number of alleles). If these extreme windows are tracking selection at linked sites, theory predicts that they should be more common in regions of the genome with less recombination. We tested this prediction by comparing recombination rates in these extreme windows and in other regions of the genome and found that extreme windows had a significantly lower recombination rate than the genomic average. The proportion of extreme windows was significantly higher on the X chromosome than on the autosomes. Moreover, all the windows with extreme skews on the X chromosome were found in two clusters near the centromere; both these clusters exhibit markedly reduced recombination rates. These analyses point to regions of the genome that may recently have been subject to positive selection. These results also suggest that the effects of positive selection may be more pronounced on the X chromosome than on the autosomes in humans.
引用
收藏
页码:1143 / 1153
页数:11
相关论文
共 42 条
[1]  
[Anonymous], 1991, The Causes of Molecular Evolution
[2]   THE POPULATION-GENETICS OF HAPLO-DIPLOIDS AND X-LINKED GENES [J].
AVERY, PJ .
GENETICS RESEARCH, 1984, 44 (03) :321-341
[3]   Reduced X-linked nucleotide polymorphism in Drosophila simulans [J].
Begun, DJ ;
Whitley, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (11) :5960-5965
[4]   THE HITCHHIKING EFFECT ON THE SITE FREQUENCY-SPECTRUM OF DNA POLYMORPHISMS [J].
BRAVERMAN, JM ;
HUDSON, RR ;
KAPLAN, NL ;
LANGLEY, CH ;
STEPHAN, W .
GENETICS, 1995, 140 (02) :783-796
[5]   THE RELATIVE RATES OF EVOLUTION OF SEX-CHROMOSOMES AND AUTOSOMES [J].
CHARLESWORTH, B ;
COYNE, JA ;
BARTON, NH .
AMERICAN NATURALIST, 1987, 130 (01) :113-146
[6]  
CHURCHILL GA, 1994, GENETICS, V138, P963
[7]  
Cornuet JM, 1996, GENETICS, V144, P2001
[8]   A comprehensive genetic map of the human genome based on 5,264 microsatellites [J].
Dib, C ;
Faure, S ;
Fizames, C ;
Samson, D ;
Drouot, N ;
Vignal, A ;
Millasseau, P ;
Marc, S ;
Hazan, J ;
Seboun, E ;
Lathrop, M ;
Gyapay, G ;
Morissette, J ;
Weissenbach, J .
NATURE, 1996, 380 (6570) :152-154
[9]  
EWENS WJ, 1972, THEOR POPUL BIOL, V3, P87, DOI 10.1016/0040-5809(72)90035-4
[10]   A human population bottleneck can account for the discordance between patterns of mitochondrial versus nuclear DNA variation [J].
Fay, JC ;
Wu, CI .
MOLECULAR BIOLOGY AND EVOLUTION, 1999, 16 (07) :1003-1005