Incidence of plague associated with increased winter-spring precipitation in New Mexico

被引:165
作者
Parmenter, RR
Yadav, EP
Parmenter, CA
Ettestad, P
Gage, KL
机构
[1] Univ New Mexico, Dept Biol, Albuquerque, NM 87131 USA
[2] New Mexico Dept Hlth, Off Epidemiol, Santa Fe, NM USA
[3] Natl Ctr Infect Dis, Ctr Dis Control & Prevent, Div Vector Borne Infect Dis, Ft Collins, CO USA
关键词
D O I
10.4269/ajtmh.1999.61.814
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Plague occurs episodically in many parts of the world, and some outbreaks appear to be related to increased abundance of rodents and other mammals chat serve as hosts for vector fleas. Climate: dynamics may influence the abundance of both fleas and mammals, thereby having an indirect effect on human plague incidence. An understanding of the relationship between climate and plague could be useful in predicting periods of increased risk of plague transmission. In this study, we used correlation analyses of 215 human cases of plague in relation to precipitation records from 1948 to 1996 in areas of New Mexico with history of human plague cases (38 cities, towns, and villages). We conducted analyses using 3 spatial scales: global (El Nino-Southern Oscillation Indices [SOI]); regional (pooled stale-wide precipitation averages); and local (precipitation data from weather stations near plague case sites). We found that human plague cases in New Mexico-occurred more frequently following winter-spring periods (October to May) with above-average precipitation (mean plague years = 113% of normal rain/snowfall), resulting in 60% more cases of plague in humans following wet versus dry winter-spring periods. However, we obtained significant results at local level only; regional state-wide precipitation averages and SOI values exhibited no significant correlations to incidence of human plague cases. These results are consistent with our hypothesis of a trophic cascade in which increased winter-spring precipitation enhances small mammal food resource productivity (plants and insects), leading to an increase in the abundance of plague hosts. In addition, moister climate conditions may act to promote flea survival and reproduction, also enhancing plague transmission. Finally, the result that the number of human plague cases in New Mexico was positively associated with higher than normal winter-spring precipitation at. a local scale can be used by physicians and public health personnel to identify and predict periods of increased risk of plague transmission to humans.
引用
收藏
页码:814 / 821
页数:8
相关论文
共 37 条
[1]   BUBONIC PLAGUE OUTBREAK IN MOZAMBIQUE, 1994 [J].
BARRETO, A ;
ARAGON, M ;
EPSTEIN, PR .
LANCET, 1995, 345 (8955) :983-984
[2]   Cycles of malaria associated with El Nino in Venezuela [J].
Bouma, MJ ;
Dye, C .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1997, 278 (21) :1772-1774
[3]   CLIMATE-CHANGE AND PERIODIC EPIDEMIC MALARIA [J].
BOUMA, MJ ;
SONDORP, HE ;
VANDERKAAY, HJ .
LANCET, 1994, 343 (8910) :1440-1440
[4]  
*BUR CENS US, 1996, INT EST TOT RES POP
[5]  
COOK GC, 1992, J ROY SOC MED, V85, P688
[6]   PLAGUE - A CLINICAL REVIEW OF 27 CASES [J].
CROOK, LD ;
TEMPEST, B .
ARCHIVES OF INTERNAL MEDICINE, 1992, 152 (06) :1253-1256
[7]  
*DEP COMM US, 1998, SO OSC IND DAT 1948
[8]  
*DEP COMM US, 1998, CLIM DAT NEW MEX 194
[9]  
DUBYANSNKII MA, 1992, ZH MIKROBIOL EPIDEMI, V9, P46
[10]   ENVIRONMENTAL-FACTORS IN DISEASE SURVEILLANCE [J].
EPSTEIN, PR ;
CHIKWENHERE, GP .
LANCET, 1994, 343 (8910) :1440-1441