Injectable chitosan-based hydrogels for cartilage tissue engineering

被引:379
作者
Jin, R. [1 ]
Teixeira, L. S. Moreira [2 ]
Dijkstra, P. J. [1 ,3 ,4 ]
Karperien, M. [2 ]
van Blitterswijk, C. A. [2 ]
Zhong, Z. Y. [3 ,4 ]
Feijen, J. [1 ]
机构
[1] Univ Twente, Fac Sci & Technol, Dept Polymer Chem & Biomat, Inst Biomed Technol BMTI, NL-7500 AE Enschede, Netherlands
[2] Univ Twente, Fac Sci & Technol, Dept Tissue Regenerat, Inst Biomed Technol BMTI, NL-7500 AE Enschede, Netherlands
[3] Soochow Univ, Coll Chem Chem Engn & Mat Sci, Biomed Polymers Lab, Suzhou 215123, Peoples R China
[4] Soochow Univ, Coll Chem Chem Engn & Mat Sci, Jiangsu Key Lab Organ Chem, Suzhou 215123, Peoples R China
关键词
Hydrogel; Biodegradable; Enzymatic crosslinking; Chitosan; Chondrocytes; IN-VITRO DEGRADATION; PHOTOCROSSLINKABLE CHITOSAN; CHONDROCYTES; DERIVATIVES; POLYSACCHARIDE; CHITIN; PH;
D O I
10.1016/j.biomaterials.2009.01.020
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Water-soluble chitosan derivatives, chitosan-graft-glycolic acid (GA) and phloretic acid (PA) (CH-GA/PA), were designed to obtain biodegradable injectable chitosan hydrogels through enzymatic crosslinking with horseradish peroxidase (HRP) and H2O2. CH-GA/PA polymers were synthesized by first conjugating glycolic acid (GA) to native chitosan to render the polymer soluble at pH 7.4, and subsequent modification with phloretic acid (PA). The CH-GA43/PA10 with a degree of substitution (DS, defined as the number of substituted NH2 groups per 100 glucopyranose rings of chitosan) of GA of 43 and DS of PA of 10 showed a good solubility at pH values up to 10. Short gelation times (e.g. 10 s at a polymer concentration of 3 wt%), as recorded by the vial tilting method, were observed for the CH-GA43/PA10 hydrogels using HRP and H2O2. It was shown that these hydrogels can be readily degraded by lysozyme. In vitro culturing of chondrocytes in CH-GA43/PA10 hydrogels revealed that after 2 weeks the cells were viable and retained their round shape. These features indicate that CH-GA/PA hydrogels are promising as an artificial extracellular matrix for cartilage tissue engineering. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2544 / 2551
页数:8
相关论文
共 38 条
[1]   Methacrylated glycol chitosan as a photopolymerizable biomaterial [J].
Amsden, Brian G. ;
Sukarto, Abby ;
Knight, Darryl K. ;
Shapka, Stephen N. .
BIOMACROMOLECULES, 2007, 8 (12) :3758-3766
[2]   Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications [J].
Berger, J ;
Reist, M ;
Mayer, JM ;
Felt, O ;
Gurny, R .
EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, 2004, 57 (01) :35-52
[3]   PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release [J].
Bhattarai, N ;
Ramay, HR ;
Gunn, J ;
Matsen, FA ;
Zhang, MQ .
JOURNAL OF CONTROLLED RELEASE, 2005, 103 (03) :609-624
[4]   CHONDROCYTES IN AGAROSE CULTURE SYNTHESIZE A MECHANICALLY FUNCTIONAL EXTRACELLULAR-MATRIX [J].
BUSCHMANN, MD ;
GLUZBAND, YA ;
GRODZINSKY, AJ ;
KIMURA, JH ;
HUNZIKER, EB .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1992, 10 (06) :745-758
[5]   Thermo-responsive chitosan-graft-poly(N-isopropylacrylamide) injectable hydrogel for cultivation of chondrocytes and meniscus cells [J].
Chen, Jyh-Ping ;
Cheng, Tai-Hong .
MACROMOLECULAR BIOSCIENCE, 2006, 6 (12) :1026-1039
[6]   Chondrogenic differentiation of human mesenchymal stem cells using a thermosensitive poly(N-isopropylacrylamide) and water-soluble chitosan copolymer [J].
Cho, JH ;
Kim, SH ;
Park, KD ;
Jung, MC ;
Yang, WI ;
Han, SW ;
Noh, JY ;
Lee, JW .
BIOMATERIALS, 2004, 25 (26) :5743-5751
[7]   Engineering cartilage tissue [J].
Chung, Cindy ;
Burdick, Jason. A. .
ADVANCED DRUG DELIVERY REVIEWS, 2008, 60 (02) :243-262
[8]   Biomimetic surface modification of poly(L-lactic acid) with chitosan and its effects on articular chondrocytes in vitro [J].
Cui, YL ;
Di Qi, A ;
Liu, WG ;
Wang, XH ;
Wang, H ;
Ma, DM ;
De Yao, K .
BIOMATERIALS, 2003, 24 (21) :3859-3868
[9]   HUMAN CARTILAGE LYSOZYME [J].
GREENWAL.RA ;
TSANG, A ;
DIAMOND, HS ;
JOSEPHSO.AS .
JOURNAL OF CLINICAL INVESTIGATION, 1972, 51 (09) :2264-+
[10]   Injectable gels for tissue engineering [J].
Gutowska, A ;
Jeong, B ;
Jasionowski, M .
ANATOMICAL RECORD, 2001, 263 (04) :342-349