Deriving quantitative conclusions from microarray expression data

被引:41
作者
Olshen, AB
Jain, AN
机构
[1] Univ Calif San Francisco, Canc Res Inst, Ctr Comprehens Canc, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Dept Lab Med, San Francisco, CA 94143 USA
[3] Mem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, New York, NY 10021 USA
关键词
D O I
10.1093/bioinformatics/18.7.961
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: The last few years have seen the development of DNA microarray technology that allows simultaneous measurement of the expression levels of thousands of genes. While many methods have been developed to analyze such data, most have been visualization-based. Methods that yield quantitative conclusions have been diverse and complex. Results: We present two straightforward methods for identifying specific genes whose expression is linked with a phenotype or outcome variable as well as for systematically predicting sample class membership: (1) a conservative, permutation-based approach to identifying differentially expressed genes; (2) an augmentation of K-nearest-neighbor pattern classification. Our analyses replicate the quantitative conclusions of Golub et al. (Science, 286, 531-537, 1999) on leukemia data, with better classification results, using far simpler methods. With the breast tumor data of Perou et al. (Nature, 406, 747-752, 2000), the methods lend rigorous quantitative support to the conclusions of the original paper. In the case of the lymphoma data in Alizadeh et al. (Nature, 403, 503-511, 2000), our analyses only partially support the conclusions of the original authors.
引用
收藏
页码:961 / 970
页数:10
相关论文
共 24 条
[1]   Probing lymphocyte biology by genomic-scale gene expression analysis [J].
Alizadeh, A ;
Eisen, M ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
JOURNAL OF CLINICAL IMMUNOLOGY, 1998, 18 (06) :373-379
[2]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[3]  
[Anonymous], 1993, Resampling-based multiple testing: Examples and methods for P-value adjustment
[4]   Tissue classification with gene expression profiles [J].
Ben-Dor, A ;
Bruhn, L ;
Friedman, N ;
Nachman, I ;
Schummer, M ;
Yakhini, Z .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2000, 7 (3-4) :559-583
[5]   Knowledge-based analysis of microarray gene expression data by using support vector machines [J].
Brown, MPS ;
Grundy, WN ;
Lin, D ;
Cristianini, N ;
Sugnet, CW ;
Furey, TS ;
Ares, M ;
Haussler, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (01) :262-267
[6]  
DUDOIT S, 2000, 578 BERK STAT DEP
[7]  
DUDOIT S, 2001, IN PRESS JASA
[8]   Cluster analysis and display of genome-wide expression patterns [J].
Eisen, MB ;
Spellman, PT ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (25) :14863-14868
[9]   Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring [J].
Golub, TR ;
Slonim, DK ;
Tamayo, P ;
Huard, C ;
Gaasenbeek, M ;
Mesirov, JP ;
Coller, H ;
Loh, ML ;
Downing, JR ;
Caligiuri, MA ;
Bloomfield, CD ;
Lander, ES .
SCIENCE, 1999, 286 (5439) :531-537
[10]  
Hart P.E., 1973, Pattern recognition and scene analysis