Classical groups, probabilistic methods, and the (2,3)-generation problem

被引:83
作者
Liebeck, MW [1 ]
Shalev, A [1 ]
机构
[1] HEBREW UNIV JERUSALEM, JERUSALEM, ISRAEL
关键词
D O I
10.2307/2118584
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the probability that randomly chosen elements of prescribed type in a finite simple classical group G generate G; in particular, we prove a conjecture of Kantor and Lubotzky in this area. The probabilistic approach is then used to determine the finite simple classical quotients of the modular group PSL(2)(Z), up to finitely many exceptions.
引用
收藏
页码:77 / 125
页数:49
相关论文
共 64 条
[1]  
ALBERT AA, 1959, ILLINOIS J MATH, V3, P421
[2]   A FAST AND SIMPLE RANDOMIZED PARALLEL ALGORITHM FOR THE MAXIMAL INDEPENDENT SET PROBLEM [J].
ALON, N ;
BABAI, L ;
ITAI, A .
JOURNAL OF ALGORITHMS, 1986, 7 (04) :567-583
[3]  
Alon N., 1992, PROBABILISTIC METHOD
[4]  
[Anonymous], MATH ANN
[5]  
[Anonymous], J FS U TOKYO
[6]  
[Anonymous], CANAD J MATH
[7]  
[Anonymous], 1980, TOKYO J MATH
[8]  
[Anonymous], LECT NOTES MATH
[9]  
[Anonymous], 1977, J FS U TOKYO
[10]   SOME APPLICATIONS OF THE 1ST COHOMOLOGY GROUP [J].
ASCHBACHER, M ;
GURALNICK, R .
JOURNAL OF ALGEBRA, 1984, 90 (02) :446-460