Classical groups, probabilistic methods, and the (2,3)-generation problem

被引:83
作者
Liebeck, MW [1 ]
Shalev, A [1 ]
机构
[1] HEBREW UNIV JERUSALEM, JERUSALEM, ISRAEL
关键词
D O I
10.2307/2118584
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the probability that randomly chosen elements of prescribed type in a finite simple classical group G generate G; in particular, we prove a conjecture of Kantor and Lubotzky in this area. The probabilistic approach is then used to determine the finite simple classical quotients of the modular group PSL(2)(Z), up to finitely many exceptions.
引用
收藏
页码:77 / 125
页数:49
相关论文
共 64 条
[11]  
ASCHBACHER M, 1976, NAGOYA MATH J, V63, P1
[12]   ON THE MAXIMAL-SUBGROUPS OF THE FINITE CLASSICAL-GROUPS [J].
ASCHBACHER, M .
INVENTIONES MATHEMATICAE, 1984, 76 (03) :469-514
[14]  
Bochert Alfred, 1892, Math. Ann., V40, P176, DOI DOI 10.1007/BF01443562
[15]  
Bollobas B., 1978, EXTREMAL GRAPH THEOR
[16]   Pairs of generators of the known simple groups whose orders are less than one million [J].
Brahana, HR .
ANNALS OF MATHEMATICS, 1930, 31 :529-549
[17]   Certain perfect groups generated by two operators of orders two and three. [J].
Brahana, HR .
AMERICAN JOURNAL OF MATHEMATICS, 1928, 50 :345-356
[18]   CONJUGATE CLASSES OF CHEVALLEY GROUPS OF TYPE (G2) [J].
CHANG, B .
JOURNAL OF ALGEBRA, 1968, 9 (02) :190-&
[19]  
COHEN AM, 1987, P S PURE MATH, V47, P367
[20]  
Dickson LE., 1958, LINEAR GROUPS EXPOSI