An entropy criterion for assessing the number of clusters in a mixture model

被引:1759
作者
Celeux, G
Soromenho, G
机构
[1] UNIV LISBON, LEAD, P-1600 LISBON, PORTUGAL
[2] INST NATL RECH INFORMAT & AUTOMAT RHONE ALPES, F-38330 Montbonnot St Martin, FRANCE
关键词
cluster analysis; Gaussian mixture; entropy; Bayesian criteria;
D O I
10.1007/BF01246098
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider an entropy criterion to estimate the number of clusters arising from a mixture model. This criterion is derived from a relation linking the likelihood and the classification likelihood of a mixture. Its performance is investigated through Monte Carlo experiments, and it shows favorable results compared to other classical criteria.
引用
收藏
页码:195 / 212
页数:18
相关论文
共 33 条
[1]   MIXTURE-MODELS, OUTLIERS, AND THE EM ALGORITHM [J].
AITKIN, M ;
WILSON, GT .
TECHNOMETRICS, 1980, 22 (03) :325-331
[2]  
AITKIN M, 1985, J ROY STAT SOC B MET, V47, P67
[3]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[4]   MODEL-BASED GAUSSIAN AND NON-GAUSSIAN CLUSTERING [J].
BANFIELD, JD ;
RAFTERY, AE .
BIOMETRICS, 1993, 49 (03) :803-821
[5]  
Bezdek J. C., 1981, Pattern recognition with fuzzy objective function algorithms
[6]  
Bock H.H., 1989, CONCEPTUAL NUMERICAL, P12
[7]   ON SOME SIGNIFICANCE TESTS IN CLUSTER-ANALYSIS [J].
BOCK, HH .
JOURNAL OF CLASSIFICATION, 1985, 2 (01) :77-108
[8]   MULTI-SAMPLE CLUSTER-ANALYSIS USING AKAIKES INFORMATION CRITERION [J].
BOZDOGAN, H ;
SCLOVE, SL .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1984, 36 (01) :163-180
[9]   ON THE INFORMATION-BASED MEASURE OF COVARIANCE COMPLEXITY AND ITS APPLICATION TO THE EVALUATION OF MULTIVARIATE LINEAR-MODELS [J].
BOZDOGAN, H .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1990, 19 (01) :221-278
[10]  
Bozdogan H., 1993, Information and classification: Concepts, methods and applications, P40, DOI DOI 10.1007/978-3-642-50974-2_5