Interactions between posterior gamma and frontal alpha/beta oscillations during imagined actions

被引:142
作者
de Lange, Floris P. [1 ]
Jensen, Ole [1 ]
Bauer, Markus [1 ]
Toni, Ivan [1 ,2 ]
机构
[1] Radboud Univ Nijmegen, FC Donders Ctr Cognit Neuroimaging, NL-6500 HB Nijmegen, Netherlands
[2] Radboud Univ Nijmegen, Nijmegen Inst Cognit & Informat, NL-6500 HB Nijmegen, Netherlands
来源
FRONTIERS IN HUMAN NEUROSCIENCE | 2008年 / 2卷
关键词
motor simulation; mental rotation; motor imagery; MEG; synchronization; cross-frequency coupling;
D O I
10.3389/neuro.09.007.2008
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Several studies have revealed that posterior parietal and frontal regions support planning of hand movements but far less is known about how these cortical regions interact during the mental simulation of a movement. Here, we have used magnetoencephalography (MEG) to investigate oscillatory interactions between posterior and frontal areas during the performance of a well-established motor imagery task that evokes motor simulation: mental rotation of hands. Motor imagery induced sustained power suppression in the alpha and beta band over the precentral gyrus and a power increase in the gamma band over bilateral occipito-parietal cortex. During motor imagery of left hand movements, there was stronger alpha and beta band suppression over the right precentral gyrus. The duration of these power changes increased, on a trial-by-trial basis, as a function of the motoric complexity of the imagined actions. Crucially, during a specific period of the movement simulation, the power fluctuations of the frontal beta-band oscillations became coupled with the occipito-parietal gamma-band oscillations. Our results provide novel information about the oscillatory brain activity of posterior and frontal regions. The persistent functional coupling between these regions during task performance emphasizes the importance of sustained interactions between frontal and occipito-parietal areas during mental simulation of action.
引用
收藏
页数:12
相关论文
共 66 条
[1]   Induced visual illusions and gamma oscillations in human primary visual cortex [J].
Adjamian, P ;
Holliday, IE ;
Barnes, GR ;
Hillebrand, A ;
Hadjipapas, A ;
Singh, KD .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2004, 20 (02) :587-592
[2]  
[Anonymous], 1993, SPECTRAL ANAL PHYS A, DOI [10.1017/cbo9780511622762, DOI 10.1017/CBO9780511622762, 10.1017/CBO9780511622762]
[3]   Tangential derivative mapping of axial MEG applied to event-related desynchronization research [J].
Bastiaansen, MCM ;
Knösche, TR .
CLINICAL NEUROPHYSIOLOGY, 2000, 111 (07) :1300-1305
[4]   Tactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas [J].
Bauer, M ;
Oostenveld, R ;
Peeters, M ;
Fries, P .
JOURNAL OF NEUROSCIENCE, 2006, 26 (02) :490-501
[5]   Action prediction in the cerebellum and in the parietal lobe [J].
Blakemore, SJ ;
Sirigu, A .
EXPERIMENTAL BRAIN RESEARCH, 2003, 153 (02) :239-245
[6]   LARGE-SCALE CORTICAL NETWORKS AND COGNITION [J].
BRESSLER, SL .
BRAIN RESEARCH REVIEWS, 1995, 20 (03) :288-304
[7]   Cortical correlate of the piper rhythm in humans [J].
Brown, P ;
Salenius, S ;
Rothwell, JC ;
Hari, R .
JOURNAL OF NEUROPHYSIOLOGY, 1998, 80 (06) :2911-2917
[8]   Task-related coupling from high- to low-frequency signals among visual cortical areas in human subdural recordings [J].
Bruns, A ;
Eckhorn, R .
INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2004, 51 (02) :97-116
[9]   Parieto-frontal coding of reaching: an integrated framework [J].
Burnod, Y ;
Baraduc, P ;
Battaglia-Mayer, A ;
Guigon, E ;
Koechlin, E ;
Ferraina, S ;
Lacquaniti, F ;
Caminiti, R .
EXPERIMENTAL BRAIN RESEARCH, 1999, 129 (03) :325-346
[10]   Actor's and observer's primary motor cortices stabilize similarly after seen or heard motor actions [J].
Caetano, Gina ;
Jousmaki, Veikko ;
Hari, Riitta .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (21) :9058-9062