A pigment-binding protein essential for regulation of photosynthetic light harvesting

被引:1185
作者
Li, XP
Bjorkman, O
Shih, C
Grossman, AR
Rosenquist, M
Jansson, S
Niyogi, KK [1 ]
机构
[1] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA
[2] Carnegie Inst Sci, Dept Plant Biol, Stanford, CA 94305 USA
[3] Umea Univ, Dept Plant Physiol, Umea Plant Sci Ctr, S-90187 Umea, Sweden
关键词
D O I
10.1038/35000131
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Photosynthetic light harvesting in plants is regulated in response to changes in incident light intensity. Absorption of light that exceeds a plant's capacity for fixation of CO2 results in thermal dissipation of excitation energy in the pigment antenna of photosystem II by a poorly understood mechanism. This regulatory process, termed nonphotochemical quenching, maintains the balance between dissipation and utilization of light energy to minimize generation of oxidizing molecules, thereby protecting the plant against photo-oxidative damage. To identify specific proteins that are involved in nonphotochemical quenching, we have isolated mutants of Arabidopsis thaliana that cannot dissipate excess absorbed light energy. Here we show that the gene encoding PsbS, an intrinsic chlorophyll-binding protein of photosystem II, is necessary for nonphotochemical quenching but not for efficient light harvesting and photosynthesis, These results indicate that PsbS may be the site for nonphotochemical quenching, a finding that has implications for the functional evolution of pigment-binding proteins.
引用
收藏
页码:391 / 395
页数:5
相关论文
共 47 条
[1]   CAROTENOID-BINDING PROTEINS OF PHOTOSYSTEM-II [J].
BASSI, R ;
PINEAU, B ;
DAINESE, P ;
MARQUARDT, J .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1993, 212 (02) :297-303
[2]  
BELL WR, 1994, SEMIN HEMATOL, V31, P19
[3]  
BILGER W, 1994, PLANTA, V193, P238, DOI 10.1007/BF00192536
[4]   Screening of chlorina mutants of barley (Hordeum vulgare L.) with antibodies against light-harvesting proteins of PS I and PS II: Absence of specific antenna proteins [J].
Bossmann, B ;
Knoetzel, J ;
Jansson, S .
PHOTOSYNTHESIS RESEARCH, 1997, 52 (02) :127-136
[5]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[6]   A MOLECULAR MECHANISM FOR Q(E)-QUENCHING [J].
CROFTS, AR ;
YERKES, CT .
FEBS LETTERS, 1994, 352 (03) :265-270
[7]   SHORT-TERM ADAPTATION OF PLANTS TO CHANGING LIGHT INTENSITIES AND ITS RELATION TO PHOTOSYSTEM-II PHOTOCHEMISTRY AND FLUORESCENCE EMISSION [J].
DAU, H .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 1994, 26 (01) :3-27
[8]   Survey of thermal energy dissipation and pigment composition in sun and shade leaves [J].
Demmig-Adams, B .
PLANT AND CELL PHYSIOLOGY, 1998, 39 (05) :474-482
[9]   CAROTENOIDS AND PHOTOPROTECTION IN PLANTS - A ROLE FOR THE XANTHOPHYLL ZEAXANTHIN [J].
DEMMIGADAMS, B .
BIOCHIMICA ET BIOPHYSICA ACTA, 1990, 1020 (01) :1-24
[10]   PHOTOPROTECTION AND OTHER RESPONSES OF PLANTS TO HIGH LIGHT STRESS [J].
DEMMIGADAMS, B ;
ADAMS, WW .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1992, 43 :599-626