Vortex induced rotation of clusters of localized states in the complex Ginzburg-Landau equation

被引:63
作者
Skryabin, DV [1 ]
Vladimirov, AG
机构
[1] Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England
[2] St Petersburg State Univ, Fac Phys, St Petersburg 198904, Russia
关键词
D O I
10.1103/PhysRevLett.89.044101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report existence of a qualitatively distinct class of spiral waves in the two-dimensional cubic-quintic complex Ginzburg-Landau equation. These are stable clusters of localized states rotating around a central vortex core emerging due to interference of the tails of the individual states involved. We also develop an asymptotic theory allowing calculation of the angular frequency and stability analysis of the rotating clusters.
引用
收藏
页码:1 / 044101
页数:4
相关论文
共 19 条
[1]   Stability of bound states of pulses in the Ginzburg-Landau equations [J].
Afanasjev, VV ;
Malomed, BA ;
Chu, PL .
PHYSICAL REVIEW E, 1997, 56 (05) :6020-6025
[2]   Multisoliton solutions of the complex Ginzburg-Landau equation [J].
Akhmediev, NN ;
Ankiewicz, A ;
SotoCrespo, JM .
PHYSICAL REVIEW LETTERS, 1997, 79 (21) :4047-4051
[3]   STABLE PARTICLE-LIKE SOLUTIONS OF MULTIDIMENSIONAL NONLINEAR FIELDS [J].
ARANSON, IS ;
GORSHKOV, KA ;
LOMOV, AS ;
RABINOVICH, MI .
PHYSICA D, 1990, 43 (2-3) :435-453
[4]   Induced coherence and stable soliton spiraling [J].
Buryak, AV ;
Kivshar, YS ;
Shih, MF ;
Segev, M .
PHYSICAL REVIEW LETTERS, 1999, 82 (01) :81-84
[5]   OPTICAL VORTICES [J].
COULLET, P ;
GIL, L ;
ROCCA, F .
OPTICS COMMUNICATIONS, 1989, 73 (05) :403-408
[6]   Oscillon-type structures and their interaction in a Swift-Hohenberg model [J].
Crawford, C ;
Riecke, H .
PHYSICA D-NONLINEAR PHENOMENA, 1999, 129 (1-2) :83-92
[7]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[8]   INTERACTION OF 2-DIMENSIONAL LOCALIZED SOLUTIONS NEAR A WEAKLY INVERTED BIFURCATION [J].
DEISSLER, RJ ;
BRAND, HR .
PHYSICAL REVIEW A, 1991, 44 (06) :R3411-R3414
[9]   Rotating optical soliton clusters [J].
Desyatnikov, AS ;
Kivshar, YS .
PHYSICAL REVIEW LETTERS, 2002, 88 (05) :4
[10]   INTERACTIONS OF SOLITONS IN NON-INTEGRABLE SYSTEMS - DIRECT PERTURBATION METHOD AND APPLICATIONS [J].
GORSHKOV, KA ;
OSTROVSKY, LA .
PHYSICA D, 1981, 3 (1-2) :428-438