Identifying the site of initial tertiary structure disruption during apomyoglobin unfolding

被引:24
作者
Feng, ZY [1 ]
Ha, JH [1 ]
Loh, SN [1 ]
机构
[1] SUNY Hlth Sci Ctr, Dept Biochem & Mol Biol, Syracuse, NY 13210 USA
关键词
D O I
10.1021/bi991933e
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Structural characterization of protein unfolding intermediates [Kiefhaber et al. (1995) Nature 375, 513; Hoeltzli et al.(1995) Proc. Natl. Acad. Sci. U.S.A. 92, 9318], which until recently were thought to be nonexistent, is beginning to give information on the mechanism of unfolding. To test for apomyoglobin unfolding intermediates, we monitored kinetics of urea-induced denaturation by stop-flow tryptophan fluorescence and quench-flow amide hydrogen exchange. Both measurements yield a single, measurable kinetic phase of identical rate, indicating that the reaction is highly cooperative. A burst phase in fluorescence? however, suggests that an intermediate is rapidly formed. To structurally characterize it, we carried out stop-flow thiol-disulfide exchange studies of 10 single cysteine-containing mutants. Cysteine probes buried at major sites of helix-helix pairing revealed that side chains throughout the protein unpack and become accessible to the labeling reagent [5,5'-dithiobis (2-nitrobenzoic acid)] with one of two rates. Probes located at all helical-packing interfaces-except for one-become exposed at the rate of global unfolding as determined by fluorescence and hydrogen exchange measurements. In contrast, probes located at the A-E helical interface undergo complete thiol-disulfide exchange within the mixing dead time of 6 ms. These results point to the existence of a burst-phase unfolding intermediate that contains globally intact hydrogen bonds but locally disrupted side-chain packing interactions. Dissolution of secondary and tertiary structure are therefore not tightly coupled processes. We suggest that disruption of tertiary structure may be a stepwise process that begins at the weakest point of the native fold, as determined by native-state hydrogen-exchange parameters.
引用
收藏
页码:14433 / 14439
页数:7
相关论文
共 29 条
[1]   PROTEIN-FOLDING INTERMEDIATES - NATIVE-STATE HYDROGEN-EXCHANGE [J].
BAI, YW ;
SOSNICK, TR ;
MAYNE, L ;
ENGLANDER, SW .
SCIENCE, 1995, 269 (5221) :192-197
[2]   ACID AND THERMAL-DENATURATION OF BARNASE INVESTIGATED BY MOLECULAR-DYNAMICS SIMULATIONS [J].
CAFLISCH, A ;
KARPLUS, M .
JOURNAL OF MOLECULAR BIOLOGY, 1995, 252 (05) :672-708
[3]   MOLECULAR-DYNAMICS SIMULATION OF PROTEIN DENATURATION - SOLVATION OF THE HYDROPHOBIC CORES AND SECONDARY STRUCTURE OF BARNASE [J].
CAFLISCH, A ;
KARPLUS, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (05) :1746-1750
[4]   Effect of H helix destabilizing mutations on the kinetic and equilibrium folding of apomyoglobin [J].
Cavagnero, S ;
Dyson, HJ ;
Wright, PE .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 285 (01) :269-282
[5]   Detection of rare partially folded molecules in equilibrium with the native conformation of RNaseH [J].
Chamberlain, AK ;
Handel, TM ;
Marqusee, S .
NATURE STRUCTURAL BIOLOGY, 1996, 3 (09) :782-787
[6]   SPECTROSCOPIC DETERMINATION OF TRYPTOPHAN AND TYROSINE IN PROTEINS [J].
EDELHOCH, H .
BIOCHEMISTRY, 1967, 6 (07) :1948-&
[7]   Is apomyoglobin a molten globule? Structural characterization by NMR [J].
Eliezer, D ;
Wright, PE .
JOURNAL OF MOLECULAR BIOLOGY, 1996, 263 (04) :531-538
[8]   STUDIES ON THE STRUCTURE OF HEMOGLOBIN .1. PHYSICOCHEMICAL PROPERTIES OF HUMAN GLOBIN [J].
FANELLI, AR ;
ANTONINI, E ;
CAPUTO, A .
BIOCHIMICA ET BIOPHYSICA ACTA, 1958, 30 (03) :608-615
[9]   Changes in side chain packing during apomyoglobin folding characterized by pulsed thiol-disulfide exchange [J].
Ha, JH ;
Loh, SN .
NATURE STRUCTURAL BIOLOGY, 1998, 5 (08) :730-737
[10]   SITE-DIRECTED MUTAGENESIS BY OVERLAP EXTENSION USING THE POLYMERASE CHAIN-REACTION [J].
HO, SN ;
HUNT, HD ;
HORTON, RM ;
PULLEN, JK ;
PEASE, LR .
GENE, 1989, 77 (01) :51-59