A simple, mechanistic model for directional instability during mitotic chromosome movements

被引:105
作者
Joglekar, AP [1 ]
Hunt, AJ [1 ]
机构
[1] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA
关键词
D O I
10.1016/S0006-3495(02)75148-5
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
During mitosis, chromosomes become attached to microtubules that emanate from the two spindle poles. Thereafter, a chromosome moves along these microtubule "tracks" as it executes a series of movements that bring it to the spindle equator. After the onset of anaphase, the sister chromatids separate and move to opposite spindle poles. These movements are often characterized by "directional instability" (a series of runs with approximately constant speed, punctuated by sudden reversals in the direction of movement), To understand mitosis, it is critical to describe the physical mechanisms that underlie the coordination of the forces that drive directional instability. We propose a simple mechanistic model that describes the origin of the forces that move chromosomes and the coordination of these forces to produce directional instability. The model demonstrates that forces, speeds, and direction of motion associated with prometaphase through anaphase chromosome movements can be predicted from the molecular kinetics of interactions between dynamic microtubules and arrays of microtubule binding sites that are linked to the chromosome by compliant elements.
引用
收藏
页码:42 / 58
页数:17
相关论文
共 74 条
[1]   Xkid, a chromokinesin required for chromosome alignment on the metaphase plate [J].
Antonio, C ;
Ferby, I ;
Wilhelm, H ;
Jones, M ;
Karsenti, E ;
Nebreda, AR ;
Vernos, I .
CELL, 2000, 102 (04) :425-435
[2]  
AULT JG, 1991, J CELL SCI, V99, P701
[3]   THE FREE-ENERGY FOR HYDROLYSIS OF A MICROTUBULE-BOUND NUCLEOTIDE TRIPHOSPHATE IS NEAR ZERO - ALL OF THE FREE-ENERGY FOR HYDROLYSIS IS STORED IN THE MICROTUBULE LATTICE [J].
CAPLOW, M ;
RUHLEN, RL ;
SHANKS, J .
JOURNAL OF CELL BIOLOGY, 1994, 127 (03) :779-788
[4]  
CASSIMERIS L, 1994, J CELL SCI, V107, P285
[5]  
CASSIMERIS L, 1991, J CELL SCI, V98, P151
[6]   Merotelic kinetochore orientation is a major mechanism of aneuploidy in mitotic mammalian tissue cells [J].
Cimini, D ;
Howell, B ;
Maddox, P ;
Khodjakov, A ;
Degrassi, F ;
Salmon, ED .
JOURNAL OF CELL BIOLOGY, 2001, 153 (03) :517-527
[7]   Microtubule polymerization dynamics [J].
Desai, A ;
Mitchison, TJ .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1997, 13 :83-117
[8]   A NEW ROLE FOR MOTOR PROTEINS AS COUPLERS TO DEPOLYMERIZING MICROTUBULES [J].
DESAI, A ;
MITCHISON, TJ .
JOURNAL OF CELL BIOLOGY, 1995, 128 (1-2) :1-4
[9]   Measurement of the force-velocity relation for growing microtubules [J].
Dogterom, M ;
Yurke, B .
SCIENCE, 1997, 278 (5339) :856-860
[10]  
DOORN GS, 2000, EUR BIOPHYS J, V29, P2