Non-Gaussian simulation using Hermite polynomial expansion: convergences and algorithms

被引:96
作者
Puig, B
Poiron, F
Soize, C
机构
[1] Ctr Chatillon Leclerc, DDSS, MS, ONERA, F-92322 Chatillon, France
[2] Univ Paris 06, Paris, France
[3] Univ Marne La Vallee, Marne La Vallee, France
关键词
Monte Carlo simulation; non-Gaussian process; hermite polynomial expansion;
D O I
10.1016/S0266-8920(02)00010-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Mathematical justifications are given for a Monte Carlo simulation technique based on memoryless transformations of Gaussian processes. Different types of convergences are given for the approaching sequence. Moreover an original numerical method is proposed in order to solve the functional equation yielding the underlying Gaussian process autocorrelation function. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:253 / 264
页数:12
相关论文
共 27 条
  • [1] [Anonymous], 1962, STOCHASTIC PROCESSES
  • [2] BERNARD P, 1984, J MEC THEOR APPL, V3, P905
  • [3] BERNARD P, 1999, STOCHASTIC NEWMARK M, P365
  • [4] Declercq D, 1998, THESIS CERGY PONTOIS
  • [5] DEODATIS G, 1991, APPL MECH REV, V44, P191
  • [6] Devroye L., 1986, NONUNIFORM RANDOM VA
  • [7] DUFLO M., 1997, Random Iterative Models
  • [8] Simulation of non-Gaussian field applied to wind pressure fluctuations
    Gioffrè, M
    Gusella, V
    Grigoriu, M
    [J]. PROBABILISTIC ENGINEERING MECHANICS, 2000, 15 (04) : 339 - 345
  • [9] Simulation of stationary non-Gaussian translation processes
    Grigoriu, M
    [J]. JOURNAL OF ENGINEERING MECHANICS-ASCE, 1998, 124 (02): : 121 - 126
  • [10] Gurley K, 1999, COMPUTATIONAL STOCHA, P11